

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

REMEDIATION OF CONTAMINATED WATER USING SOME PHYSICAL AND RADIATION TECHNIQUES

By

MOHAMMAD MAHMOUD SAYED ALY DAWOUD

B.Sc. Agric. Sci. (Agric. Engineering), Faculty of Agriculture, Ain Shams University, 2011.M.Sc. Agric. Sci. (Agric. Engineering), Faculty of Agriculture, Ain Shams University, 2016.

A Thesis submitted in partial fulfillment
Of
The requirements for the degree of

DOCTOR OF PHILOSOPHY
in
Agricultural Sciences
(Irrigation and Drainage Engineering)

Department of Agricultural Engineering
Faculty of Agriculture
Ain Shams University

Approval Sheet

REMEDIATION OF CONTAMINATED WATER USING SOME PHYSICAL AND RADIATION TECHNIQUES

By

MOHAMMAD MAHMOUD SAYED ALY DAWOUD

B.Sc. Agric. Sci. (Agric. Engineering), Faculty of Agriculture, Ain Shams University, 2011.M.Sc. Agric. Sci. (Agric. Engineering), Faculty of Agriculture, Ain Shams University, 2016.

This	Thesis for Ph.D. degree has been approved by:
•	Mohamed El-Sayed Abuarab Prof. of Agricultural Engineering, Faculty of Agriculture, Cairo University.
	Mahmoud Mohamed Ahmed Elbordiny
:	Waleed Kamel Mohammed Salim ElHelew Associate Prof. of Agricultural Engineering, Faculty of Agriculture, Ain Shams University.
	Mahmoud Mohamed Hegazi Prof. Emeritus of Agricultural Engineering, Faculty of Agriculture, Ain Shams University.

Date of Examination: 04 / 11 / 2021

REMEDIATION OF CONTAMINATED WATER USING SOME PHYSICAL AND RADIATION TECHNIQUES

By

MOHAMMAD MAHMOUD SAYED ALY DAWOUD

B.Sc. Agric. Sci. (Agric. Engineering), Faculty of Agriculture, Ain Shams University, 2011.M.Sc. Agric. Sci. (Agric. Engineering), Faculty of Agriculture, Ain Shams University, 2016.

Under the supervision of:

Dr. Mahmoud Mohamed Hegazi

Prof. Emeritus of Agricultural Engineering, Agricultural Engineering Department, Faculty of Agriculture, Ain Shams University.

Dr. Waleed Kamel Mohammed Salim ElHelew

Associate Prof. of Agricultural Engineering, Agricultural Engineering Department, Faculty of Agriculture, Ain Shams University.

Dr. Hosam El-Din Mostafa Saleh

Prof. of Chemistry of Waste Management, Radioisotopes Department, Nuclear Research Center, Egyptian Atomic Energy Authority.

ABSTRACT

Mohammad Mahmoud Dawoud: Remediation of Contaminated Water Using Some Physical and Radiation Techniques. Unpublished Ph.D. thesis, Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University, 2021.

Water pollution, particularly with rapid industrial growth, is one of the most stressful issues in our country. Getting rid of heavy metals has become complicated and costly and also, one of the most difficult challenges facing the water treatment sector in Egypt and the world was the high cost of treatment because it requires very expensive infrastructure and it is a part of the long plans of governments and institutions, as well as the cost of operating these plants.

This work was conducted for an economic, environmental, and efficient solution that using microcrystalline cellulose (McC) for wastewater treatment. Where cobalt and cesium removal mechanism was studied by using Microcrystalline Cellulose and chemically modified microcrystalline cellulose by one of the low-molecular-weight organic acids such as Citric Acid (McC-CA), which are extra chelators for Cobalt and Cesium from aqueous solution and the removal of most harmful of their isotopes (60 Co and 137 Cs) also have been studied. Also, an engineered system was fabricated to study the removal efficiency of microcrystalline Cellulose for Total Suspended Solids (TSS).

To reach the desired degree of environmental safety and save the effort and time in this research, the Taguchi robust method was used to design experiments to optimize the factors affecting Cobalt and Cesium removal by using Microcrystalline Cellulose (Ion concentration, pH, adsorbent dosage, and contact time) through an orthogonal array (OA) L16 = 4⁴ using batch experiments technique.

The results illustrated the contribution of the factors for both Co (II) and Cs (II) by using (ANOVA), where the most efficient parameter was pH followed by the Ion concentration (C), then Sorbent Dose (D), and the last one was Contact Time (T). The optimum combination for Co (II) and Cs (I) adsorption was pH (5-6), C (1-50 mg.L⁻¹), D (3-4 g.L⁻¹), T (60-100 mins.), and the percent removal for Co (II) and Cs (I) was 74% and 88% respectively. Furthermore, when this combination was applied to ⁶⁰Co and ¹³⁷Cs the percent removal ranged from 96.01% to 90.28% for ⁶⁰Co, and 100% to 94.25% for ¹³⁷Cs.

Also, Taguchi's robust method was used to optimize the factors affecting TSS removal by the engineered system using McC, (Flow rate, Weight of material, operating time) through an orthogonal array (OA) L9 = 3³. the optimal combination for TSS removal was recognized as A1B3C1 Where, Flowrate (level 1 = 2 L.min⁻¹, S/N = -1.96), Weight of material (level 3 = 1 Kg, S/N = -2.17), and Operating time (level 1 = 30 mins., S/N = -2.8) Consequently, and the optimal number of washing times was five times, which gives results of 88% TSS percent removal, which is equivalent to 49.2 mg.L⁻¹. Taguchi approach has been used very effectively to optimize parameters and to improve the reliability according to contour plots and verification tests. The optimum dose of gamma radiation to sterilize the water produced from the engineered system was 20 KGy.

our findings suggested that (McC) is highly efficient in cobalt, cesium, and TSS removal from wastewater as well as the Taguchi approach is a proper strategy to optimize the adsorption parameters and gamma radiation is an effective technique in wastewater sterilization.

Keywords: Microcrystalline cellulose; Wastewater; Heavy metals; Cobalt; Cesium; Radionuclides; Adsorption; Environmental pollution; Taguchi; Gamma Radiation, and Sterilization.

ACKNOWLEDGEMENT

I wish to express my deep appreciation and gratitude to **Prof. Dr. Mahmoud Hegazi**, Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University for his kind supervision through this work. I am grateful for his valuable discussion, suggestions and helpful criticism, which helped me to implement this work.

I wish to express my sincere gratitude and appreciation to **Prof. Dr. Hosam El-Din Mostafa Saleh** Department of Radioisotopes, Nuclear research center, Atomic Energy Authority for his kind supervision, continuous encouragement and valuable advises through this work.

I wish to express my sincere gratitude and appreciation to **Dr. Waleed ElHelew**, Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University for his kind supervision and helping me to overcome all barriers to finish this work.

I am deeply indebted to **Dr. Mostafa Zahran** Department of Soil and water, nuclear research center, Atomic Energy Authority for his great effort and advice throughout this work.

I am deeply indebted to **Dr. Ragab Mohasab** Department of radiation protection, Hot labs center, Atomic Energy Authority for his great effort and advice throughout this work.

I extend my thanks and Love to my honorable parents, my brothers, my sisters, my wife, and my children. They endured much for me.... Really thanks my family.

Finally, I would also like to place on record, my sense of gratitude to one and all who, directly or indirectly, lent their helping hand in this work.

CONTENTS

	Page
LIST OF TABLES	IV
LIST OF FIGURES	V
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	4
2.1. Wastewater treatment technologies	4
2.1.1 Chemical wastewater treatment technologies	4
2.1.2 Biological wastewater treatment technology	4
2.1.3. Physical treatments	6
2.2 Heavy metals pollutants	7
2.2.1 Pollution with Cobalt and Cesium	7
2.2.2 Cobalt	8
2.2.3 Cesium	11
2.3 Adsorption	12
2.4 Microcrystalline Cellulose (McC)	14
2.5 The different ways to prepare (McC)	16
2.6 Heavy metals sorption by using McC	17
2.7 Wastewater sanitization by Gamma-ray	19
3. MATERIALS AND METHODS	20
3.1. Preparation of McC	20
3.1.1. Modification McC with Citric Acid (CA)	20
3.2. ⁶⁰ Co and ¹³⁷ Cs radioisotope adsorption	21
3.3. Engineered system for water treatment by using McC	22
3.3.1. Steps followed in the experiment	22
3.4. Treatment steps and system components	22
3.4.1. Raw wastewater storage tank	24

	Page
3.4.2. Electrical pump	24
3.4.3. Flow and pressure gauges	25
3.4.4. stainless steel vessel	26
3.5. Sampling and analytical methods	27
3.5.1. Sampling	27
3.5.2. Analytical methods	27
3.5.3. TSS analysis	27
3.5.4. Microcrystalline cellulose preparing	28
3.6. Experimental design for optimizing the factors affected on	
TSS removal by McC Engineered system	28
3.7. Backwashing experiment	31
3.8. Comparison between the effect of exposed surface area and	
material depth on TSS removal	31
3.9. The effect of gamma radiation on treated water	31
4. RESULTS AND DISCUSSION	32
4.1. Characterization by FT-IR before and after CA	
modification	32
4.2. Characterization by SEM before and after CA	
modification	34
4.3 Characterization of McC-AC by SEM-EDX microscope	
before and after Co (II) & Cs (I) adsorption	35
4.4. Experimental design to optimize Co (II) and Cs(I)	
adsorption factors on McC-CA	36

	Page
4.5. Taguchi's L16 experimental study to optimize adsorption	
reaction	37
4.6. Signal to Noise (S/N) ratio Examination	37
4.7. ANOVA Investigation	43
4.8. Experimental results evaluation	44
4.9. Comparison of calculated and expected results	47
4.10. ⁶⁰ Co and ¹³⁷ Cs adsorption by using McC-CA with the guidance of Taguchi's L16 experimental study results	49
4.11.Taguchi's L9 experimental study and optimization process	49
4.12. Signal to Noise (S/N) ratio Examination	50
4.13. Assessment of experimental observations	51
4.14. The aberration between calculated and actual results	53
4.15. Backwashing	54
4.16. Comparison between the effect of exposed surface area and material depth on TSS removal	55
4.17. Effect of gamma radiation on Bacterial activity and	
growth in treated water	56
5. SUMMARY AND CONCLUSION	57
6. REFERENCES	60
ARABIC SUMMARY	

LIST OF TABLES

Гable		Page
No.		
1	Different natural and economical sources of cellulose for McC	15
	production	
2	Maximum adsorption capacities for heavy metals by using	
	McC adsorbent.	18
3	Sample values for some of the physicochemical characteristics	
	of studied wastewater	27
4	Control parameters and their selected levels	30
5	The results of trials and S/N ratios for TSS percent removal	
	under control factors	30
6	The chemical compositions with EDX of McC-AC after and	
	before Co (II) and Cs (I) adsorption	35
7	Adsorption control parameters and their selected levels	
	Parameters	36
8	The results of trials and S/N ratios for Co (II) and Cs(I)	
	removal by using McC-CA	39
9	S/N response table for Co (II) and Cs (I) removal by using McC	40
	CA	
10	Variance analysis of Co (II) and Cs (I) percent removal by	44
	McC-CA	
11	Mean response for Co(II) and Cs(I) percent removal by McC-CA	48
12	Predicted and confirmation results for Co (II) and Cs (I)	48
	percent removal by McC-CA	
13	S/N response for TSS removal %R under control factors	51
14	Mean response for TSS removal %R under control factors	53

LIST OF FIGURES

Figure		Dogo
No.		Page
1	Crushed lava rock filter implemented at the household level	6
2	McC preparation stages	20
3	Co (II) and Cs (I) adsorption mechanism by using McC-CA	23
4	Wastewater tank	24
5	Electrical motor and power controller	25
6	The pressure gauge and flow meter	25
7	The stainless-steel vessel, plastic cup, and the perforated irregular holes strainers	26
8	Co (II) and Cs (I) adsorption mechanism by using McC-CA	33
9	FT-IR spectra of McC and McC-CA	33
10	SEM images of McC and McC-CA	34
11	Stages of Taguchi's strategy	41
12	The effect of design parameters on average S/N ratio for Co (II) removal % (a-d) and Cs (I) removal % (e-h)	42
13	Impact of control factors on percent removal (%R) for Co(II) (a-d) and Cs(I) (e-h) by using McC-CA	46
14	The percent removal of ⁶⁰ Co and ¹³⁷ Cs by using McC-CA	49
15	The effect of study variables on average S/N ratio for TSS removal %R	51
16	Impact of control factors on percent removal (%R) for TSS by using McC under control factors	52
17	Impact of backwash repeating number on percent removal (%R) for TSS and the difference in pressure before and after treatment by using McC system	54

Figure		Page
No.		1 age
18	The effect of exposed surface area and material depth	
	on TSS removal	55