

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Systematic review & Meta-analysis of comparative study between saphenous vein and radial artery as a conduit in coronary artery bypass grafting surgery

THESIS

FOR PARTIAL FULFILMENT OF MASTER DEGREE IN CARDIOVASCULAR SURGERY

By Ahmed Magdy Mohamed Abd El-Salam

(M.B., B.CH.)
Faculty of medicine _ Ain Shams University

Under Supervision of

Prof. Dr. Ahmed Abdel Aziz Ibrahim Saleh

Professor of Cardiothoracic surgery
Faculty of Medicine _ Ain Shams University

Prof. Dr. Ayman Ammar

Professor of Cardiothoracic surgery
Faculty of Medicine _ Ain Shams University

Dr. Tamer Shahat Hikal

Lecturer of Cardiothoracic surgery
Faculty of Medicine _ Ain Shams University

Faculty of Medicine Ain Shams University 2021

بسم الله الرحمن الرحيم

First and foremost I feel always indebted to ALLAH, the great creator and the source of all man's knowledge

It is a great honor to me to express my deepest gratitude to my supervisor **Prof. Dr. Ahmed Abdel Aziz Ibrahim Saleh,** Professor of Cardiothoracic surgery _ Faculty of medicine-Ain Shams University, for his kind guidance, close supervision and constant encouragement.

My great thanks to **Prof. Dr. Ayman Ammar,** Professor of Cardiothoracic surgery _ Faculty of medicine-Ain Shams University, for his continuous advice, help, encouragement and supervision during this study.

Great thanks to **Dr. Tamer Shahat Hiakal,** Lecturer of Cardiothoracic surgery _ Faculty of medicine-Ain Shams University, for his sincere supervision and valuable guidance.

Also I am deeply grateful to my professors and my colleagues in the department of Cardiothoracic Surgery, Faculty of Medicine – Ain Shams University for their help and support.

Dedication

To my father for his support.

To my mother for her ultimate care. I owe her everything.

To my brothers, my lovely wife, and my dear friends: thanks for being in my life.

CONTTENTS

Item	Page
Abstract	VI
List of abbreviation	VII
List of figures & supplementary figures	X
List of tables	XII
Introduction & historical background	1
Surgical anatomy & harvesting techniques	8
Methods	11
Results	15
Discussion	36
Conclusion	40
Summary	41
References	42
Appendices	50
Arabic summary	Í

ABSTRACT

Background & Objectives:

The modern coronary artery surgery has developed on the foundation of testing several grafts and an attempt to standardize them, which has brought along the beginning of evidence-based cardiac surgery.

Multiple conduits are used and the golden standard is the left internal mammary artery to the left anterior descending artery. While the choice of the 2nd conduit is still controversial.

The aim of this work is to compare by Meta-analysis study the difference between Radial Artery (RA) & Saphenous vein (SV) as second conduits in CABG regarding long-term patency, mortality & morbidity.

Subjects & Methods:

In this study, we included data from 15 cohort & case matched studies involving 78,267 patients in aggregate with a mean follow-up of 8.25 years. We made pairwise meta-analyses of our outcomes using Comprehensive Meta-Analysis software (CMA version 3.9).

Results:

In our study, we found that the using of saphenous vein during CABG had a higher complete graft occlusion/stenosis rate, myocardial infarction rate, mortality rate, stroke rate, major adverse cardiac events (MACE) rate than the using of Radial artery. While the using of radial artery during CABG had a higher patency rate, percutaneous coronary intervention rate, coronary surgery repetition rate than the using of saphenous vein

Conclusion:

These results indicate that the radial artery has long-term beneficial & improving post-operative outcomes rather than the saphenous vein.

Keywords: Coronary Artery Bypass, Saphenous vein, Radial artery.

List of Abbreviations

Abb.	Full term	
A	Artery	
ART	Arterial Revascularization Trial	
BIMA	Bilateral internal mammary artery	
BITA	Bilateral internal thoracicartery	
BRM	Brachioradialis muscle	
CABG	Coronary artery bypass graft	
CAD	Coronary artery disease	
CI	Confidence intervals	
CMA	Comprehensive Meta-Analysis	
COPD	Chronic obstructive pulmonary disease	
CVH	Conventional vein harvesting	
DES	Drug eluting stents	
DSWI	Deep sternal wound infection	
EVH	Endoscopic vein harvesting	
FCRM	Flexor carpi radialis muscle	
FRIMA	Free right internal thoracic artery	
GEA	Gastroepiploic artery	
GSV	Great saphenous vein	
HCR	Hybrid coronary revascularization	
ICTRP	International Clinical Trials Registry Platform	
IRR	Incident rate ratio	
ISI	International Scientific Indexing	
IMA	Internal mammary artery	

ITA	Internal thoracic artery		
LABCN	Lateral antebrachial cutaneous nerve		
LAD	Left Anterior descending LIMA		
	Left internal mammary artery		
LITA	Left internal thoracic artery		
MABG	Multiple arterial coronary artery bypass graft		
MACE	Major adverse cardiac events		
MI	Myocardial infarction		
MIDCAB	Minimally invasive direct coronary artery bypass grafting		
mRCT	metaRegister of Controlled Trials		
NHLBI	National Heart, Lung, and Blood Institute		
NIH	National Institutes of Health		
OR	Odds ratio		
PCI	Percutaneous coronary intervention		
PRISMA	Preferred reporting items for systematic reviews and meta-		
IKISMA	analysis		
QA	Quality assessment		
RA	Radial artery		
RAPCO	Radial Artery Patency and Clinical Outcomes		
RCA	Right coronary artery		
RCT	Randomized control trial		
RIMA	Right internal mammary artery		
RITA	Right internal thoracic artery		
RRA	Recurrent radial artery		
SABG	Single arterial coronary artery bypass graft		
SBT	Standard bridging technique		
SIGLE	System for Information on Grey Literature in Europe		

List of Abbreviations

SPA	superficial palmar artery	
SRN	superficial radial nerve	
SV	Saphenous vein	
SVG	Saphenous vein graft	
TECAB	Totally endoscopic coronary artery bypass	
US	United States	
\mathbf{V}	Vein	
VHL	Virtual Health Library	
Vs	Versus	

List of figures

List of figures & supplementary figures

Figure No.	Title	Page No.
Figure 1	Anatomic landmarks and skin incision.	14
Figure 2	Incising BRM and FCRM fascia.	14
Figure 3	PRISMA flow diagram of the search and review process	21
Figure 4	Meta-analysis for complete graft occlusion rate with radial a. vs. saphenous v. in CABG	23
Figure 5	Meta-analysis for myocardial infarction rate with radial a. vs. saphenous v. in CABG	24
Figure 6	Meta-analysis for mortality rate with radial a. vs. saphenous v. in CABG	26
Figure 7	Meta-analysis for patency rate with radial a. vs. saphenous v. in CABG	27
Figure 8	Meta-analysis for percutaneous coronary intervention rate with radial a. vs. saphenous v. in CABG	29
Figure 9	Meta-analysis for coronary surgery repetition rate with radial a. vs. saphenous v. in CABG	31
Figure 10	Meta-analysis for stroke rate with radial a. vs. saphenous v. in CABG	32
Figure 11	Meta-analysis for major adverse cardiac events rate with radial a. vs. saphenous v. in CABG	34
Supplementary Figure 1	Publication bias of complete graft occlusion rate with radial a. vs. saphenous v. in CABG	23
Supplementary Figure 2	Publication bias of myocardial infarction rate with radial a. vs. saphenous v. in CABG	25

List of figures

Supplementary Figure 3	Publication bias of mortality rate with radial a. vs. saphenous v. in CABG	26
Supplementary Figure 4	Publication bias of patency rate with radial a. vs. saphenous v. in CABG	
Supplementary Figure 5	Publication bias of percutaneous coronary intervention rate with radial a. vs. saphenous v. in CABG	30
Supplementary Figure 6	Publication bias of coronary surgery repetition rate with radial a. vs. saphenous v. in CABG	31
Supplementary Figure 7	Publication bias of stroke rate with radial a. vs. saphenous v. in CABG	33

List of tables

Table No.	Title	Page No.
Table 1	characteristics of included studies	35