

Ain Shams University Faculty of Specific Education Home Economy Department

Study of the Effect of Some Medicinal Herbs on Osteoporosis in Rats

$\mathbf{B}\mathbf{y}$

Eman Gamal Mohamed Abdel Halim Abu Zeid

B.Sc. Specific Edu. (Home Economic Dept.), Ain Shams University, 2010 M.Sc. Specific Edu. (Home Economic Dept.), Ain Shams University, 2016

Athesis Submitted for Partial Fulfilment of the Requirements of Ph.D. Degree in Home Economic Dept., (Nutrition & Food Science)

Under the supervision of:

Prof. Dr. Zenab Mostafa Mosa

Prof. of Food Sci. & Nutrition. Home Economic Dept., Fac. of Specific Education. Ain Shams University

Prof. Dr. Adel Bakeer Kholoussy

Prof. of Pathology. Pathology Dept. Fac. of Vet. Med. Cairo University

Prof. Dr. Samah Mohamed Ismael

Prof. of Food Sci. & Nutrition,
Former Head of Home Economic Dept.,
Fac. of Specific Education
Ain Shams University

Prof. Dr. Sahar Othman Ahmed

Chief Researcher in Food Technology Research Institute. Head of House of Experimental Animals Section

(قَالُواْ سُبْحَانَكَ لاَ عِلْمَ لَنَا إِلاَّ مَا عَلَّمْتَنَا إِلاَّ مَا عَلَّمْتَنَا إِنَّكَ أَنْتَ الْعَلِيمُ الْحَكِيمُ) عَلَّمْتَنَا إِنَّكَ أَنْتَ الْعَلِيمُ الْحَكِيمُ) صدق الله العظيم

(البقرة:32)

Approval Sheet

Student Name: Eman Gamal Mohamed Abdel Halim Abu Zeid **Title of thesis:**

Study of the Effect of Some Medicinal Herbs on Osteoporosis in Rats

Degree: Ph.D. Degree in Specific Education- Home Economic (Nutrition and Food Science)

This Thesis for **Ph.D. Degree** has been approved by:

- **Prof. Dr. Naglaa Abdelkader Awad**. Associate Prof., of Surgery, anaethesiologh and radiology Dept., Fac. of Vet. Med. Cairo University
- **Prof.Dr: Adel Bakeer Kholoussy**. Prof. of Pathology. Pathology Dept. Fac. of Vet. Med. Cairo University.
- Prof. Dr. Ekbal Mahmoud Mohamed Saleh, Prof. of Food Sci.& Nutrition, Home Economic Dept., Fac. of Specific Education, Ain Shams University.
- **Prof.Dr. Zenab Mostafa Mosa,** Prof. of Food Sci. & Nutrition, Home Economic Dept., Fac. of Specific Education, Ain Shams University
- **Prof. Dr. Samah Mohamed Ismael,** Prof. of Food Sci. & Nutrition, Former Head of Home Economic Dept., Fac. of Specific Education, Ain Shams University.

Committee in change: Date: 18 / 11/2020

ACKNOWLEDGMENT

First and foremost, all thanks and gratitude to *Allah*, the Most Merciful, gives us the power to accomplish this work.

I would like to express my great thanks to **Prof. Dr. Adel Bakeer Kholoussy** Prof. of Pathology. Pathology. Dept. Fac. of Vet. Med. Cairo University for his encouragement throughout the time of this study and through the experimental work, highly supervision, sincere advice, scientific help, co-operation in all steps of this work.

I would like to express my deepest gratitude and cordial appreciation to **Prof. Dr. Zenab Mostafa Mosa**, Prof., of Food Science and Nutrition, Faculty of Specific Education Ain Shams University, for her guidance and continuous supervisor of the thesis. Her efforts, valuable guidance, and discussion are of great respect by the author. Her encouragement through all times and helping during practical work and in the final of my thesis.

I wish to express my grateful appreciation and deepest thanks to **Prof. Dr. Samah Mohamed Ismael**, Prof., of Food Science and Nutrition, and Previous Head of Home Economic Dept., Fac. of Specific Education, Ain Shams University for her direct supervision, careful guidance, willing cooperation, and valuable assistance as well as continuous encouragement throughout this study and through the experimental work. She really offered great support and to her I really offer my sincere appreciations.

My thanks are due to **Prof.Dr. Sahar Othman Ahmed Allam,** Chief Researcher of Food Technology Research Institute. Head of House of Experimental Animals Section for here direct supervision, careful guidance, willing cooperation, and valuable assistance as well as continuous. She really offered great support and to here I really offer my sincere appreciations.

I wish to introduce my deep respect and thanks to **Dr. Gamil Elsayed Ibrahim,** Chief Researcher of Flavour Chemistry, Flavour and Aroma Chemistry Dept., National Research Center, Egypt.

Thanks also to every one who provided help or advise me to achieve this manuscript.

Study of the Effect of Some Medicinal Herbs on Osteoporosis in Rats

By

Eman Gamal Mohamed Abdel Halim Abu Zeid

B.Sc. Specific Edu. (Home Economic Dept.), Ain Shams University, 2010.M.Sc. Specific Edu. (Home Economic Dept.), Ain Shams University, 2016

ABSTRACT

The present study was carried out to investigate the chemical and biological effects of ginger and turmeric as medicinal herbs on osteoporosis rats. Osteoarthritis is the most common form of arthritis, involving inflammation and major structural changes of the joint, causing pain and functional disability. Pain and stiffness, particularly after exercise, are the major symptoms. There is discordance between symptoms and radiographic changes, with some sufferers not experiencing symptoms, but showing osteoarthritic changes on X-ray. Major chemical constituent's (moisture, protein, fat, crude fibre, total digestible nutrients, ash, carbohydrate) of ginger and turmeric was determined. Also, phosphorous, calcium, volatile compounds and phytochemicals were determined to the same tested samples.

Fourty eight non-pregnant female Albino rats weighing (160 to 210 g) were taken and divided into eight groups, each with (6) rats. The first group is the negative control (-) group and fed on basal diet for (8) weeks. The other groups injected with beta methasone (4 mg / kg bw) three times per week for three weeks to induce osteoporosis, Positive control group (+) which fed on basal diet only but the other groups fed on basal diet with different doses (10 - 15%) from ginger, turmeric and mixture of them. The results revealed that all groups fed on basal diet and administrated with different doses of ginger and

turmeric (10 -15%) had significant decrease in liver function (ALT, AST), phosphorus, total calcium, ionized calcium comparing with the positive control group (injected with prednisone acetate). On the other hand, x-ray and histopathology of the positive control group after two months revealed bone loss of different parts such as fibula, tibia and femur in addition to bone demineralization, femoral fracture and fibula bone trabexculae showed dystrophy and resorption and osteoporosis. These findings revealed that ginger and turmeric treatment attenuated and treated degrees to osteoporosis in compare to positive control group.

Keywords: Osteoporosis, Ginger, Turmeric, Prednisone acetate, Chemical Analysis, Phytochemicals, Liver enzymes, X-ray, Histopathology.

CONTENTS

	Page
LIST OF TABLES	Iii
LIST OF FIGURES	Iv
LIST OF PHOTO	Vi
LIST OF ABBREVIATIONS	Vii
INTRODUCTION	1
1.1. Aim of the study	4
2. REVIEW OF LITERATURE	5
2.1. Medicinal herbs and its Importance	5
2.1.1. Phytochemicals of herbs	6
2.1.2. Immunoherbs and its importance	7
2.1.3 Usage and protective function of medicinal plants	8
2.2. Ginger (Zingiber officinale)	9
2.2.1. Nutritional Uses of Ginger	11
2.2.2.Chemistryofginger	13
2.2.3 Ginger and glands of various diseases	14
2.2.4. Ginger and Osteoporosis	15
2. 3. Curcumin	24
2.3.1. Pharmaceutical properties of turmeric	27
2.3.2. Properties of Curcumin	28
2.3.3. Composition of Turmeric and Bioavailability	28
2.3.4. Ethnopharmacological relevance	37
2.3.5. Curcumin and osteoarthritis.	39
2.4. Osteoarthritis.	44

3. MATERIAL AND METHODS		53
3.1. Mate	rials	53
3.2. Anal	ytical methods	55
3.3. Biolo	ogical experiment	56
3.3.1.	Animal, housing and diets	56
3.3.2.	Biological Determination	57
3.4. Biocl	hemical analysis	58
3.5. Histo	pathology Technique	59
3.6.Scann	ning X-ray	60
3.7. Radi	iological.	60
3.7. Statis	stical Analysis	60
4. RESULTS	S AND DISCUSSION	61
4.1-Chemica	d composition.	63
4.2- Phytochemicals		64
4.3- Volatile	compounds	68
4.4- weight	gains	71
4.5- organs v	weight	75
4.6- liver function and phosphorus		77
4.7- total and ionized calcium		78
4.8- x-ray st	udies	83
	4.8.1-Radiographic findings of gr(1)	84
	4.8.2-Radiographic findings of gr(2)	85
	4.8.3-Radiographic findings of gr(3)	86
	4.8.4-Radiographic findings of gr(4)	87
	4.8.5- Radiographic findings of gr(5)	88
	4.8.6-Radiographic findings of gr(6)	89
	4.8.7-Radiographic findings of gr(7)	90
4.9-Histopat	4.8.8-Radiographic findings of gr(8) 4.8.9-Radiographic findings of gr(9) hological	91 92
IIIBtopat	1101061041	

4.9.1- Histopathological changes in (control (-) and control (+) groups) liver with (H&E)	95
4.9.2- Histological changes in the liver stained with groups experimentally inducted ras and administrated.	95
4.9.3-Histopathological changes in (control (-) and control (+)	
groups) kidney with (H&E)	
4.9.4-Histological changes in the kidney stained with(H&E X40) groups experimentally inducted rats and administrated	95
4.9.5-Histopathological changes in (control (-) and control (+)	100
groups) FEMUR BONE with (H&E)	
4.9.6-Histological changes in FEMUR BONE stained with(H&E	106
X40) groups experimentally inducted rats and	105
administrate	
5. RECOMMENDATIONS	113
6. SUMMARY and CONCLUSION	114
7. REFERENCES	119
Arabic Summery	

LIST OF TABLES

No.		Page
В	Composition of commercial diet.	57
1	The Chemical composition of Ginger and Turmeric	62
2	Phytochemical analyses of Ginger and Turmeric.	64
3	Volatile compounds of ginger essential oil	66
4	Volatile compounds of turmeric essential oil	67
5	Effect of ginger and turmeric on weight gains of rats suffering from osteoporosis	69
	surrering from osteoporosis	70
6	Effect of ginger and turmeric on % change compared	
	with positive control group to weight gains of rats	72
	suffering from osteoporosis	
7	Effect of ginger and turmeric on relative organs weight	74
	of rats suffering from osteoporosis	74
8	Effect of ginger and turmeric on % change compared	
	with positive control group to relative organs weight of	75
	rats suffering from osteoporosis	
9	Effect of ginger and turmeric on liver function and phosphorusof rats suffering from osteoporosis.	76
10	Effect of ginger and turmeric on % change compared with positive control group to liver function and	80
	phosphorus of rats suffering from osteoporosis.	00
11	Effect of ginger and turmeric on total and ionized	80
	calcium of rats suffering from osteoporosis.	00
12	Effect of ginger and turmeric on % change compared	01
	with positive control group to total and ionized calcium	81

LIST OF FIGURES

No.		Page
1	The Chemical composition of Ginger and Turmeric	62
2	Phytochemical analyses of Ginger and Turmeric	64
3	Volatile compounds of ginger essential oil	67
4	Volatile compounds of turmeric essential oil	68
5	Effect of ginger and turmeric on weight gains of rats	70
	suffering from osteoporosis	
6	Effect of ginger and turmeric on relative organs weight of rats suffering from osteoporosis	74
7	Effect of ginger and turmeric on liver function and phosphorusof rats suffering from osteoporosis.	78
8	Effect of ginger and turmeric on total and ionized calcium of rats suffering from osteoporosis.	82

LIST OF PHOTO

No.		Page
1	Radiographic findings of gr(1).	83
2	Radiographic findings of gr(2).	84
3	Radiographic findings of gr(3).	85
4	Radiographic findings of gr(4).	86
5	Radiographic findings of gr(5).	87
6	Radiographic findings of gr(6).	88
7	Radiographic findings of gr(7).	89
8	Radiographic findings of gr(8).	90
9	Radiographic findings of gr(9).	91
10	Histopathological changes in (control (-) and control (+)	92
	groups) liver with (H&E)	
11	Histological changes in the liver stained with groups	93
	experimentally inducted ras and administrated.	
12	Histopathological changes in (control (-) and control (+)	94
	groups) kidney with (H&E)	
13	Histological changes in the kidney stained with(H&E	95
	X40) groups experimentally inducted rats and	
	administrated.	
14	Histopathological changes in (control (-) and control (+)	96
	groups) FEMUR BONE with (H&E)	
15	Histological changes in FEMUR BONE stained with(H&E X40) groups experimentally inducted rats and administrated	97

LIST OF ABBREVIATIONS

μCT Micro-computerized tomography

A.V. values Actuarial *values*

ACE Angiotensin converting enzyme

ACR American College of Rheumatology

AD Alzheimer disease

ADAMTS-5 Key enzymes in osteoarthritis†

ALT Aspartate amino transferase

ApoB Apo lipoprotein B

ARGS Antibiotic Resistance Genes
AST Alanine amino transferase

ATOAC The Athletic Trainers' Osteoarthritis Consortium

ATP Alanine Transferase

ATs Athletic trainers

BHA Butylated hydroxyani-soleBHT Butylated hydroxytoluene

BM P2,BM Expression in mesenchymal cells induces osteoblast

P4,and differentiation and bone formation. BMP blocking agents

RUNX2 genes were used to show that RUNX2-dependent osteoblast

BMI Body mass index

BWG % Body weight gain%

CEO Curcumin essential oils

CGIC Clinician Global Impression Change

CHD Coronary heart disease

CI Confidence interval

CKD Chronic kidney disease

CL Curcuma longa L.

COX Cyclooxygenase

COX Cyclo-oxygenase

DEXA dual x-ray absorptiometry**DNA** DeoxyriboNucleic Acid

DNP Donepezil

DXA Dual-energy x-ray absorptiometryEGb Effects of Ginkgo biloba extract

EGb Ginkgo biloba extract
ERs Estrogen receptors

EST Expressed Sequence Tag

EU European Union

ESR Erythrocyte sedimentation rate
FDA Food And Drug Administration

FI food intake

FPP FarnesylpyrophosphateFR fibrous roots of ginger

FRAP ferric-reducing antioxidant power assay **GC–MS** Gas chromatography–mass spectrometry

GEO Ginger essential oils

GG Ginger group

GIO Glucocorticoid-induced osteoporosisGIO Glucocorticoid-induced osteoporosisGIOP Glucocorticoid-induced osteoporosis

GKC Ginger kidney compress
GPP Ginger phenylpropanoids

GRAS Generally Recognized as Safe

GS Glucosamine sulphate

HDL-c High-density lipoprotein cholesterol

HPLC High-performance liquid chromatography

hs-CRP Hs-C reactive protein

HssAChE Human acetylcholinesterase

IBD Infectious bursal disease

IL Interleukin

IP Intraperitoneally

ITT Intention-to-treat

KI Kovat index on DB5KOA Osteoarthritis of knee

LDL-C Low-density lipoprotein cholesterol

MAbs Monoclonal antibodies

MDA Malondialdehyde

MetSs Metabolic syndromes

MG Matured ginger rhizome

mMCP-1 Mast cell protease-1

MMPs Matrix metalloproteinases

MS/MS Method from water and ethanol extracts of ginger

NCBI National Cholesterol Program1

ND Newcastle disease
NF-Kb Nuclear factor-Kb

NIH National Institutes of HealthNLC Nanostructured lipid carriers

NO Nitric oxide

NSAIDs Non-steroidal anti-inflammatory drugs

OA Osteoarthritis

OH Oxygen and hydrogen

OR Odds ratioOVA Ovalbumin

OVX Ovariectomized PG placebo group

PGA Patient Global Assessment

PGE₂ prostaglandin-E₂

PPAR-γ peroxisome proliferator-activated receptor-γ

PTOA posttraumatic OA

qCT Computed tomography **RA** Rheumatoid arthritis

ROS Reactive oxygen species

RR Risk ratio