سامية محمد مصطفى

شبكة المعلومات الحامعية

بسم الله الرحمن الرحيم

-Caro-

سامية محمد مصطفي

شبكة العلومات الحامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

سامية محمد مصطفى

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسو

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

سامية محمد مصطفي

شبكة المعلومات الجامعية

المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة ا

سامية محمد مصطفى

شبكة المعلومات الحامعية

بالرسالة صفحات لم ترد بالأصل

CAIRO UNIVERSITY FACULTY OF ENGINEERING

ROTOR DYNAMIC ANALYSIS USING TRANSFER MATRICES

BY

YASSER FATHY ZEYADA

THESIS

SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN MECHANICAL ENGINEERING

SUPERVISORS

PROF. DR. MOHAMED E. EL-ARABY

DR. ALY EL-SHAFIE

DEPARTMENT OF MECHANICAL DESIGN AND PRODUCTION ENGINEERING FACULTY OF ENGINEERING CAIRO UNIVERSITY

1994

on chy

ACKNOWLEDGEMENT

The author would like to express his deep gratitude to Dr. Aly El-Shafie for suggesting the subject of research and for his supervision and advice throughout the work.

He would also like to express his sincere thanks to Prof. Dr. Mohamed E. El-Araby for his valuable discussions, guidance and help in the course of this work.

YCKNOMI'EDGEMENT

The author would like to express his deep gratitude to Dr. Aly El-Shafie for suggesting the subject of research and for his supervision and advice throughout the work.

He would also like to express his sincere thanks to Prof. Dr. Mohamed E. El-Araby for his valuable discussions, guidance and help in the course of this work.

ABSTRACT:

Rotor dynamic analysis is considered the most important part of the design of rotating machinery. A proper estimation of rotor-bearing system parameters leads to a safe and durable operation.

Transfer Matrix models of rotor-bearing systems are widely used to perform the critical speeds, unbalance response, and stability analysis of rotating machinery. It is also capable of handling many complicated rotors with a relatively simple models and satisfacting results.

This thesis demonstrates the transfer matrix method with its types of models namely the Lumped and Continuous models. Critical speed analysis is performed using these models showing the difference in modeling procedure and results obtained. The difference in results is then explained using an order of magnitude analysis of the distinctive quantities impeded in transfer matrices of the continuous and lumped models.

Also a new technique is introduced in the stability analysis to evaluate the complex frequencies of the rotor-bearing system using the continuous approach. A first step solution is performed using continuous rotor model with the application of Transfer Matrix Polynomial method to obtain preliminary values for complex frequencies. Which in turn are entered to the continuous scheme program as initial guesses to extract the continuous approach results.

The unbalance response of rotors due to disk eccentricity is obtained without increasing the dimension of the transfer matrices. The presented method allows to investigate the case of more than one eccentric disk with phase shift in direction of eccentricity using a single rotor analysis.

CONTENTS

ABSTR CONTE	· · -	Page	no. ii iii v
	DUCTION Background Problem formulation		1 2 4 4
2.1 2.2 2.2.1 2.2.2 2.3 2.3.1	ING OF ROTOR BEARING-SYSTEMS USING TRANSFER MATRIX METHOD Modeling of rotor-bearing systems Point and Field equations point equations Field equations		6 6 11 12 16 26 27 28
UNDAMI 3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.2 3.2.1 3.2.2 3.2.3 3.3 3.4 3.4.1 3.4.2 3.5 3.5.1 3.5.2 3.5.3	ER III PED CRITICAL SPEEDS OF ROTORS Undamped critical speed analysis of symmetrical rotors Point matrix for symmetrical rotor-bearing systems Field matrix for symmetrical rotor-bearing systems Procedure Normalization, Undamped critical speed analysis of non-symmetrical roto Point matrix for non-symmetrical rotor-bearing systems Field matrix for non-symmetrical rotor-bearing systems Procedure Critical speed prediction of some rotor-bearing systems Comparison between lumped and continuous approaches critical speed evaluation Error types Comments on the comparison Effect of some rotor-bearing system parameters on critical speed results Rotor speed effect Bearing stiffness effect Effect of rotor diameter Effect of disc weight	in	30 30 32 34 38 40 42 42 43 47 48 54 61 67 68 68 70 71 72
4.1.1 4.1.2 4.1.3 4.2 4.2.1 4.2.2	ER IV LITY OF ROTOR-BEARING SYSTEMS Stability of symmetrical rotor-bearing systems Point matrix for symmetrical damped rotor-bearing systems Field matrix for symmetrical damped rotor-bearing systems Procedure Stability of non-symmetrical rotor-bearing systems Point matrix for non-symmetrical damped rotor-bearing systems Field matrix for non-symmetrical damped rotor-bearing systems Procedure	s stems	

4.3 Transfer Matrix Delimanial w	
4.3 Transfer Matrix Polynomial Method 4.4 Iterative Search Method	83
Zagaczae Deatell Wetuou	88
4.5 Stability prediction of some rotor-bearing systems	89
CHAPTER V	
UNBALANCE RESPONSE OF ROTORS USING TRANSFER MATRICES	
5.1 Procedure	108
5.2 Examples	108
F = - -	114
CHAPTER VI	
CONCLUSIONS AND SUGGESTED FUTURE WORK	
	121
REFERENCES	
	125

1

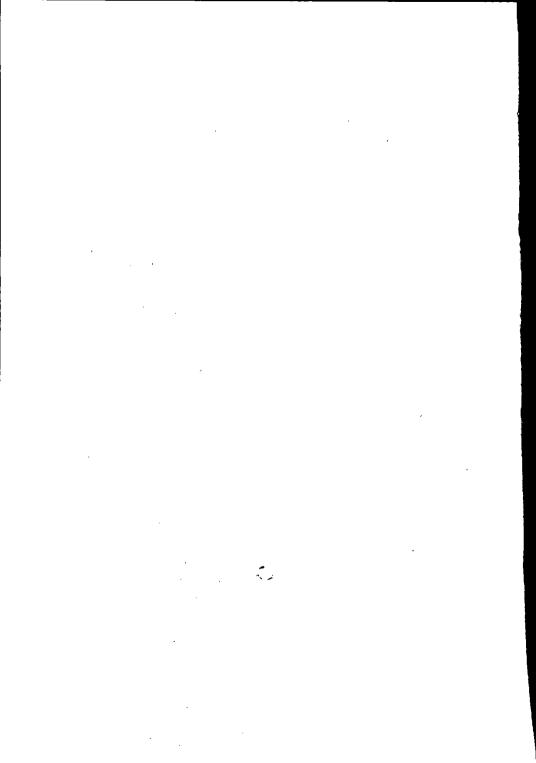
Nomenclature

```
Rotor whirling speed (rad/s)
Ω
         Rotor spin rate (rad/s)
         State vector
S
         Field mass (Kq)
m,
         Disk mass
                     (Kg)
m
         Disk diameteral moment of inertia
                                               (Kg m²)
I
         Disk polar moment of inertia
         Field density (Kq/m²)
ρ
         Disk density (Kg/m<sup>3</sup>)
Pa
         Young's modulus
                              (N/m<sup>2</sup>)
E
         Complex frequency (rad/s)
q
        Stiffness in a direction due to displacement
\mathbf{K}_{i,i}
          in i direction (N/m)
        Viscous damping in a direction due to velocity
C.,
         in direction (N s/m)
         Cross sectional area of the field
                                                (m<sup>2</sup>)
A<sub>c</sub>
         Bending moment (N m)
М
         Shear force (N)
         Slope angle in x-y plane
         Slope angle in x-z plane
         Field area moment of inertia
Ī
         Field length
L
         Field diameteral inertia per unit length
                                                        (kg m)
J
t
         Time (s)
```

G	Field	modulus	of	rigidity	(N/m^2)
---	-------	---------	----	----------	-----------

K Shear factor

Δ Unbalance eccentricity of disk (m)


d Field diameter (m)

Superscripts;

- . Derivative with respect to time
- * Dimensionless form
- L Variable at left end
- R Variable at right end

Subscripts;

- variable in ith station
- y Variable in y direction
- variable in z direction

CHAPTER I

INTRODUCTION

The calculation of critical speeds of rotary systems prediction of system stability are important parts in rotor design. In the power generation field, the ratio of power generated per (Kg) of rotating elements has been increased steadily. As a consequence, engines are designed to operate in the super critical speed regime. An important part of engine design and development is the calculation of critical speeds the forced response within the operating speed range. Ιn addition, the investigation of the dynamic stability of rotor-bearing systems is also necessary. Engines which incorporate journal bearings, intershaft viscous dampers, internal shaft damping, drum rotor rubbing or aerodynamic excitation experience dynamic instability and self-excited vibration. Generally there are three types of procedures for analysis,

- * Continuum theory
- * Finite element theory
- * Transfer matrix theory

The transfer matrix method is widely used to find critical speeds and to predict stability of rotor-bearing systems as well. This is due to the simplicity of its application on general types of rotor-bearing systems, as it reveals a significant saving in computational time.