سامية محمد مصطفى

شبكة المعلومات الحامعية

بسم الله الرحمن الرحيم

-Caro-

سامية محمد مصطفي

شبكة العلومات الحامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

سامية محمد مصطفى

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسو

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

سامية محمد مصطفي

شبكة المعلومات الجامعية

المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة ا

سامية محمد مصطفى

شبكة المعلومات الحامعية

بالرسالة صفحات لم ترد بالأصل

CAIRO UNIVERSITY FACULTY OF ENGINEERING

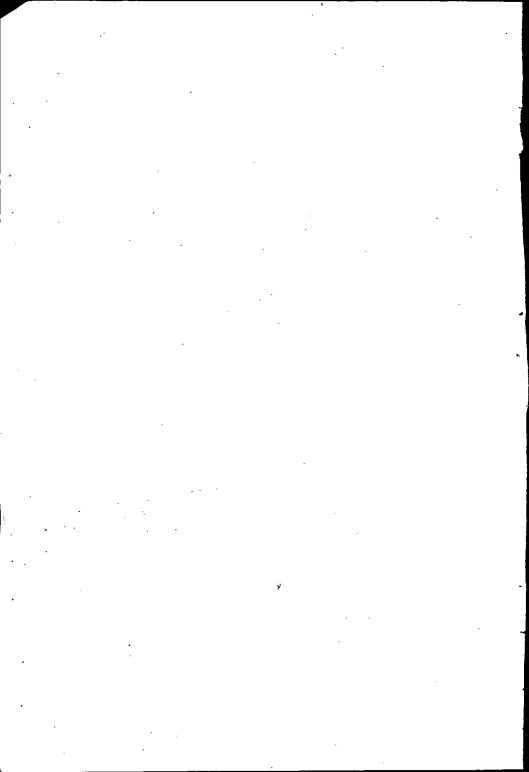
مراه ر

ANALYSIS OF SIMULATED PERFORMANCE
OF SOME PREVENTIVE MAINTENANCE POLICIES IN
A MANUFACTURING SYSTEM

Thesis Submitted for Partial Fulfillment
of the Requirements for the M.sc. Degree
In Mechanical Engineering

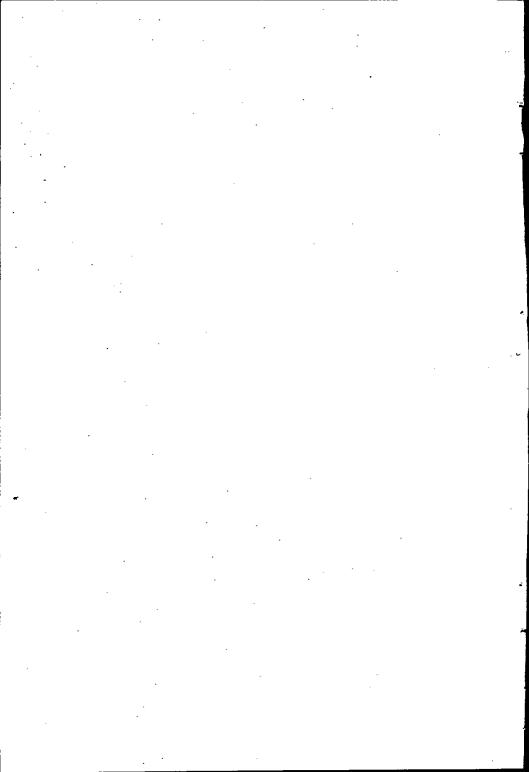
By

Tarek Younis Hassan Elmekkawy


B.Sc. Mechanical Engineering, Cairo University, 1990

Supervised By :
Dr.M.A.Shalaby
Associate Professor

Mech. Design and Production Dept.
Faculty of Engineering


Cairo University

1994

ACKNOWLEDGMENT

The author wishes to express his gratefulness and sincerest thanks to Dr.M.A.Shalby for his invaluable supervision, guidance, and encouragement throughout this research.

SUMMARY

This research is directed to analyze the simulated performance of some selected time-based maintenance policies as applied to a manufacturing system by using simulation.

A simulation model is constructed for a job shop type. This job shop contains a certain number of groups of similar machines (process layout). The modeled system can receive any number of different batches where each batch may have different processing routes. The simulation model is programmed using the SIMSCRIPT II.5 simulation language.

In this research four maintenance policies are selected to study their performance, and are compared by using some time-based measures of performance. The selected policies are no preventive maintenance(NOPM) policy(if a machine fails it is repaired), CYCLE(t) policy(Schedule a PM task after t multiples of MTBF of the machine), GROUP policy(if a machine failed it is repaired and PM tasks are performed on the remaining machines in its group), and CRIT policy(if a critical machine failed it is repaired and PM tasks are performed in the remaining machines in its group).

Five factors were taken into consideration to study their effects on the maintenance policies performance. These factors are system complexity(COMP), system loading(LOAD), job scheduling rule(RULE), service ratio(SR), and PM interval(INT). Factorial experiments is used to design the simulation experiments of this research. The statistical results of each maintenance policy are

analyzed using the analysis of variance(ANOVA) method. Two measures are used in this analysis; average flow time, and total downtime. After analyzing the results of each policy, a comparison between them was performed by using ANOVA method also.

The analysis of the maintenance policies results leads to the conclusion that Scheduling PM tasks after interval equal to the machine MTBF gives the best performance. Job scheduling rule factor has a significant effect on the average flow time while it has no effect on the total downtime. In most cases the SPT rule gives the best performance. Comparing the maintenance policies showed that the CYCLE(1.0) policy gives the best performance with respect to the other maintenance policies.

iv

CONTENTS

	Page
LIST OF TABLES	vii
LIST OF FIGURES	ix
NOMENCLATURE	хi
CHAPTER (1) :INTRODUCTION	
1.1.Background and importance	1
1.2.Problem definition	2
1.3.Research approach	2
1.4.Research outline	4
CHAPTER (2) :MAINTENANCE CONCEPTS AND POLICIES	
2.1.Introduction	6
2.2.Major types of maintenance	6
2.3. Some concepts and definitions	8
2.3.1. Failure rate and mean time	
between failures	8
2.3.2.Downtime and repair time	10
2.3.3. Reliability and maintainability	13
2.3.4.Availability	13
2.4.Maintenance policies	13
2.4.1.Breakdown maintenance policies(NOPM)	14
2.4.2. Scheduled maintenance policies	15
2.4.3.Group maintenance policies	15
2.4.4.Block replacement	16
2.4.5.Cannibalization	16

		2.4.6.Opportunistic maintenance	17
		2.4.7.Combined maintenance policies	18
		2.4.8.Inspection maintenance	19
	٠	2.5. Results of the maintenance policies	22
CHAPTER	(3)	:MODELING OF A MANUFACTURING SYSTEM	
		3.1.Configuration of a manufacturing system	25
		3.1.1.General classification	25
		3.1.1.1.Types of manufacturing systems	25
		3.1.1.2.Types of manufacturing system	
		layouts	27
		3.1.2.Job arrival pattern	28
		3.1.3.Job processing pattern	29
		3.1.4.Job scheduling rules	29
		3.1.5.Machine maintenance parameters	31
-		3.2.Measures of performance	33
		3.2.1.Time-based measures	. 33
		3.2.2.Cost-based measures	34
		3.3.Model assumptions and logic	36
		3.3.1.Model assumptions	36
		3.3.2 Model logic	38
		3.4.Proposed maintenance policies	40
CHAPTER	(4)	:THE SIMULATION MODEL	
		4.1. Types of simulation models	44
		4.2. Selection of a simulation language	46
		4.3. The simulation model : Routines and	
		events logic	49

	V1 .	
	4.3.1. The model routines	49
	4.3.2.Events logic	5 5
	4.4.Basic system parameters	5 5
	4.4.1.System configuration	55
	4.4.2.Job scheduling rule	56
	4.4.3.System loading	56
•	4.4.4.Service ratio	58
	4.4.5.PM interval	58
	4.5.Simulation model validation	59
	4.6.Warm-up period and number of replications	64
CHAPTER (5)	:EXPERIMENTAL DESIGN	
	5.1.Analysis of variance(ANOVA)	66
	5.2.Experimental factors	71
	5.3.Simulation experiments	75
CHAPTER (6)	:ANALYSIS OF SIMULATION EXPERIMENTS	
	6.1.Analysis procedure	79
	6.2.Analysis of No Preventive	
	Maintenance (NOPM) policy	. 83
	6.3.Analysis of CYCLE policy	86
	6.4.Analysis of GROUP policy	91
	6.5.Analysis of CRIT policy	94
•	6.6.Analysis of all maintenance policies	98
CHAPTER (7)	: CONCLUSIONS	10

APPENDIX (A) :A sample from the "SPSS +" output

APPENDIX (B) :Data output of various experiments

112

114

116

REFERENCES

vii

LIST OF TABLES

able		Page
(2.1)	:Levels of criticality.	20
(2.2)	:Levels of PM policies.	21
(3.1)	:Standard job scheduling rules.	30
(4.1)	:Comparisons of the simulation languages.	48
(4.2)	:Part routing for the simple system configuration.	57
(4.3)	:Mean processing times for each operation and	
	probability of arrival for each part in the simple	
•	system configuration.	57
(4.4)	:MTBF and mean repair time for the different machine	
	groups in the simple system configuration.	57
(5.1)	:The analysis of variance table for the two factors	
	fixed effects model.	70
(5.2)	:Part routing for the simple system configuration.	72
(5.3)	:Mean processing times for each operation and	
	probability of arrival for each part in the simple	
	system configuration.	72
(5.4)	:MTBF and mean repair time for the different machine \ensuremath{I}	
	groups in the simple system configuration.	72
(5.5)	:Part routing for the complex system configuration.	74
(5.6)	:Mean processing times for each operation and	
	probability of arrival for each part in the complex	
	system configuration.	74