سامية محمد مصطفى

شبكة المعلومات الحامعية

بسم الله الرحمن الرحيم

-Caro-

سامية محمد مصطفي

شبكة العلومات الحامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

سامية محمد مصطفى

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسو

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

سامية محمد مصطفي

شبكة المعلومات الجامعية

المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة ا

سامية محمد مصطفى

شبكة المعلومات الحامعية

بالرسالة صفحات لم ترد بالأصل

منكر بركه

FACULTY OF ENGINEERING CAIRO UNIVERSITY

STUDY OF SHEAR STRENGTH AND PERMEABILITY OF CHEMICALLY TREATED COHESIONLESS SOILS

BY-

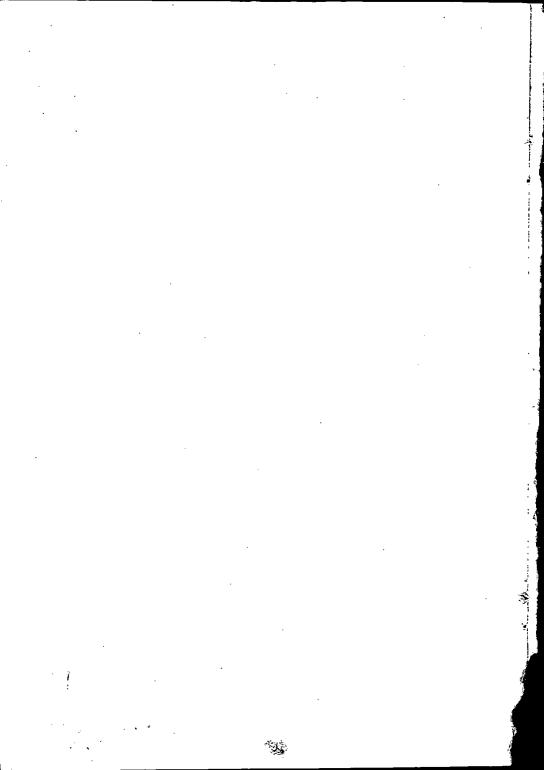
SAMEH ABU EL-SOUD AHMED B.Sc. CIVIL ENGINEERING (1988)

A THESIS
SUBMITTED IN THE PARTIAL FULFILLMENT
FOR THE REQUIREMENTS OF THE DEGREE OF
MASTER OF SCIENCE IN CIVIL ENGINEERING

SUPERVISED BY

PROF.DR. HUSSEIN H. EL-MAMLOUK
PROFFESOR OF SOIL MECHANICS AND
FOUNDATION ENGINEERING
CAIRO UNIVERSITY

DR. MOHAMED Y. EISSA
ASST. PROF.
OF SOIL MECHANICS
AND FOUNDATION ENG.
CAIRO UNIVERSITY

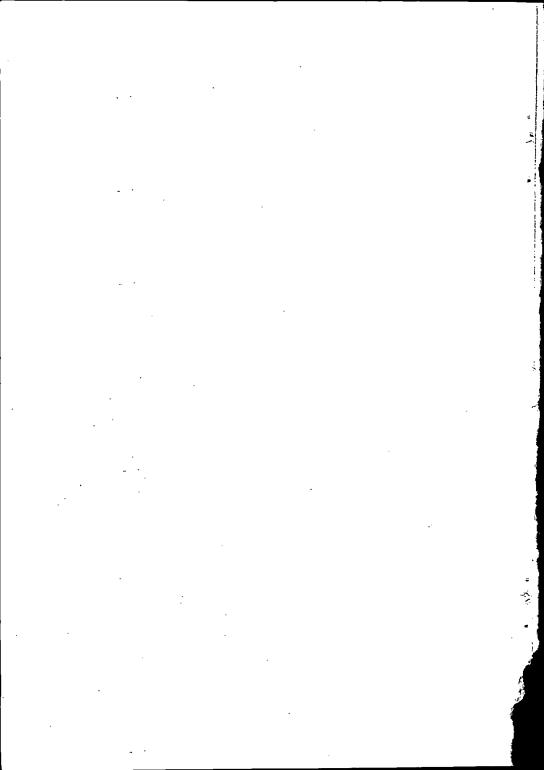

DR. SHERIF W. AGAIBY

ASST. PROF.

OF SOIL MECHANICS
AND FOUNDATION ENG.

CAIRO UNIVERSITY

1994


ACKNOWLEDGEMENT

The author expresses his sincere gratitude to Prof.Dr. Hussein H. El-Mamlouk, Professor of Soil Mechanics and Foundation Engineering, Cairo University for his helpful advice and guidance during the preparation of this thesis.

The author is grateful to Dr. Mohamed Y. Eissa, Assistant Professor of Soil Mechanics and Foundation Engineering, Cairo University for the help and invaluable suggestions throughout the work and reviewing this thesis.

The author wishes to express his gratitude to Dr. Sherif W. Agaiby, Assistant Professor of Soil Mechanics and Foundation Engineering, Cairo University for his advice, encouragement and help in producing and reviewing this thesis.

The author is also thankful to the Soil Mechanics and Foundation Research Laboratory staff at Cairo University under the directorship of Prof.Dr. Magda M. Abdel Rahman for the cooperation and help during the experimental work.

ABSTRACT

The aim of this research is to study some of the of the physical properties of cohesionless soils treated with organic and inorganic chemical additives added by weight of treated soil through a laboratory testing program carried out on 35 mm diameter cylindrical samples 50 - 80 mm long, using triaxial and unconfined compressive strength testing apparatus. The variables studied in this research program were:

For organic additives:

- . Monomer content in the mix.
- . Initiator content in the mix.
- . Mixing water content.
- . Hydrochloric acid content in the mix.

For inorganic additives:

- . Salt content in the mix.
- . Water glass content in the mix.
- . Mixing water content.
- . Hydrochloric acid content in the mix.

The research also looked at the effect of different environments on the shear strength. These environments were:

- . Time effect
- . Temperature effect.
- . Submergence in water effect.

From the obtained results for inorganic additives, it was concluded that the increase of both the salt content and

strength and permeability. On the other hand, as the hydrochloric acid content and water content increase, the shear strength and permeability decrease.

The same observations were recorded with respect to organic additive, where the shear strength increases with the monomer (urea) content increase. The initiator (ammonium chloride) content has an optimal content at which the shear strength reaches a maximum; any further increase above this initiator content reduces the strength.

CONTENTS

		Page
ACKNOWLEDGEMENT		i
ABSTRACT		ii
CONTENTS		iv
LIST OF FIGURES		ix
CHAPTER 1 : INTRODU	CTION	1
CHAPTER 2 : LITERATURE REVIEW		
2.1	GENERAL	4
2.2	Ground modification using	
	stalization with admixtures	4
2.2.1	Types of admixtures and their	
•	effect on soil properties	4
2.2.1.1	Calcium chloride	5
2.2.1.1.1	Physical properties	5
2.2.1.1.2	Effect on soil properties	6
2.2.1.1.3	Engineering uses	7
2.2.1.2	Sodium chloride	8
2.2.1.3	Sodium hydroxide	8
2.2.1.4	Sodium silicate	9
2.2.1.5	Portland cement	9
2.2.1.5.1	General	
2.2.1.5.2	Soil-cement-water reaction	9
2.2.1.5.3	Effect on soil properties and	
	engineering uses	10
2.2.1.6	Lime	1
2.2.1.6.1	General	1:

			Page
	2.2.1.6.2	Effect on soil properties and	
		engineering uses	11
	2.2.2	Techniques of construction	12
2	.3	Ground modification using grouting	13
	2.3.1	General	13
	2.3.2	Definition and purpose	14
	2.3.3	Grouting categories	14
	2.3.4	Types of grout materials	16
	2.3.5	Selection of chemical grouts	16
	2.3.6	Engineering uses and applications	17
	2.3.7	Rheology of grouts	17
	2.3.8	Grouting techniques and control	18
2	. 4	Ground modification using soil	
		reinforcement with fiber	
		mesh element	19
2 .	. 5	Ground modification using preload-	
		ing and vertical drains	19
2.	. 6	Mechanical ground modification	20
	2.6.1	General	20
	2.6.2	Effect on soil properties and	
		engineering uses	21
	2.6.3	Compaction categories	22
	2.6.3.1	Surface compaction	23
	2.6.3.2	Deep compaction	23
	2.6.3.2.1	Vibro compaction and vibro	
		replacement	23

	·	Page
2.6.3.3	Hydromechanical compaction and	
	hydraulic fill	24
2.6.4	Effect of chemical additives	
,	on compaction	25
2.6.5	Confinement and compaction	
	efficiency	25
2.6.6	Properties of compacted soil	26
CHAPTER 3 : Experi	mental work	29
3.1	General	29
3.2	Materials	29
3.2.1	Sand	29
3.2.2	Additives	31
3.2.3	Mixtures	33
3.2.3.1	Organic additives	33
3.2.3.2	inorganic additives	34
3.3	Samples preparation	35
3.4	Testing program	36
3.4.1	Preparatory testing program	
3.4.2	Main testing program	36
3.4.3	Supplementary program	37
3.4.3.1	Refrence tests	38
3.4.3.2	Study the effect of time	38
	on shear strength	
3.4.3.3	Study the effect of temperature	
	on shear strength	38

		1	Page
	3.4.3.3	Study the effect of submergence	
		in water on shear strength	39
3	.5	Testing apparatus	39
CH.	APTER 4 : TEST RE	SULT AND ANALYSIS	40
4	.1	Introduction	40
4	. 2	Shear strength and permeability	
		for the treated sand using	
		organic additive	40
4	. 3	Shear strength and permeability	
		for the treated sand using	
		inorganic additives	56
	4.3.1	For sodium floro silicate-	
		cemented sand	56
	4.3.2	For calcium chloride-cemented sand	70
	4.3.3	For sodium aluminate-cemented sand	89
	4.3.4	For aluminum floride-cemented sand	104
4	. 4	Normalized curves	121
	4.4.1	For urea-cemented sand	121
	4.4.2	For sodium floro silicate-cemented	
		sand	124
	4.4.3	For sodium aluminate-cemented sand	127
	4.4.4	For aluminum floride-cemented sand	130
4	.5	Effect of temperature on shear	
		strength properties	133
	4.5.1	General	133
	452	For urea-comented cand	124