سامية محمد مصطفى

شبكة المعلومات الحامعية

بسم الله الرحمن الرحيم

-Caro-

سامية محمد مصطفي

شبكة العلومات الحامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

سامية محمد مصطفى

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسو

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

سامية محمد مصطفي

شبكة المعلومات الجامعية

المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة ا

سامية محمد مصطفى

شبكة المعلومات الحامعية

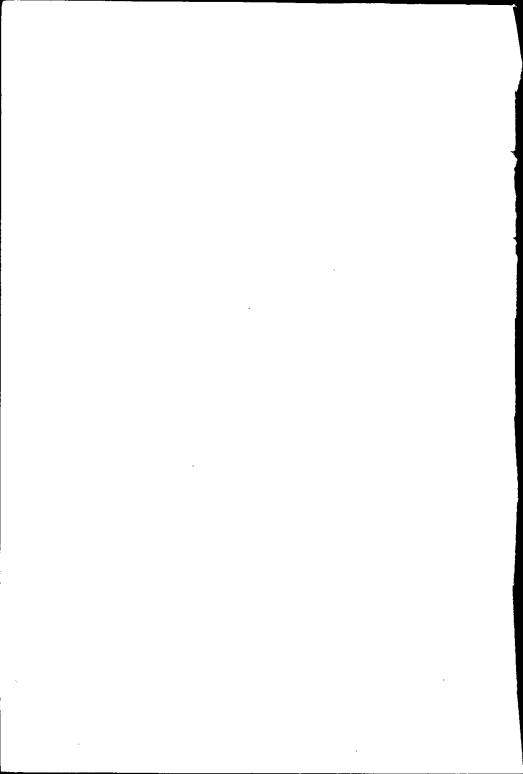
بالرسالة صفحات لم ترد بالأصل

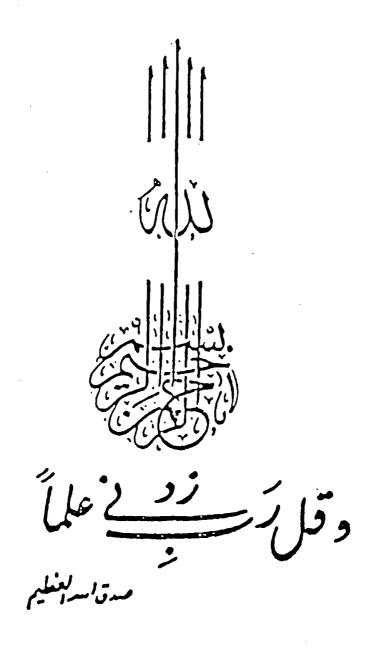
STRESS AND DEFLECTION ANALYSIS IN RIGID PAVEMENTS DUE TO MOVING AXLE LOADS

A Thesis
Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Science
in Civil Engineering

by Yasser Hassan Ahmed

B.Sc. of Civil Engineering Cairo University 1989


Supervised by


Prof. Dr. Ahmed Atef Gadallah Prof. of Highway and Airport Engineering Public Works Department Faculty of Engineering Cairo University Dr. Amr Wagich Sadek Assoc. Prof. of Structural Engineering Structural Engineering Department Faculty of Engineering Cairo University

Dr. Ragab Mousa Mohamed
Assistant Prof. of Highway and Traffic Engineering
Public Works Department
Faculty of Engineering
Cairo University

Cairo University Faculty of Engineering 1993

B \7-9.

ACKNOWLEDGEMENT

The author wishes to express his sincere gratitude and deep thanks to Prof. Dr. Ahmed Atel Gadallah (Prof. of Highway and Airport Engineering, Cairo University) who supervised this thesis and offered the support for its preparation.

The author wishes also to express his deepest appreciation and gratitude to Dr. Amr Wagieh Sadek (Assoc. Prof. of Structural Engineering) Cairo University, and Dr. Ragab Mousa Mohammed (Assistant prof. of Highway and Traffic Engineering, Cairo University) for their precious advice and stimulating supervision and encouragement.

Appreciation is expressed to all the staff of the Public Works Department (Division of Highway, Airport, and Traffic Engineering), Cairo University, for their encouragement and useful suggestions throughout the study.

ABSTRACT

Since the beginning of this century, many procedures have been used in the analysis of rigid pavement subject to wheel loads and environmental effects. Among these methods is the finite element approach which has become the most commonly used. In this study, the Finite Element Method (FEM) was utilized to analyze rigid highway pavement subject to static and moving axle loads. This was done by developing two computer programs, one for static axle loads and the other for moving axles. In these programs, every possible effort was made to ensure the program efficiency in handling matrices and storage requirements. model considers several parameters that represent pavement and loading properties including axle load, axle speed, load position, tire pressure, slab dimensions, modulus of subgrade reacand condition of load transfer at transversal joints. Slabs are idealized into rectangular plate elements connected at their corners and subject to bending stresses. The Winkler model was used to simulate the subgrade as individual elastic and massless springs.

by assigning values to the named parameters, the proper model can be used to determine the resulting deflections and stresses throughout the slab area. The model then searches the results for maximum deflection and stress that correspond to assigned pavement and load properties. Over 200 computer runs were made to provide enough results to help investigate the effect of individual parameters on the trends as well as the absolute values of the maimum deflection and stress. The

analysis of results showed that the maximum stress and deflection occur at the transversal joint when the axle load is located near to that joint. This may call for special attention to the design and load handling at slab transversal joints. Further analysis of the results indicated that maximum deflection depends on the axle load, modulus of subgrade reaction, and load transfer condition at the transversal joint, while maximum stress depends on the axle load and slab thickness. The dynamic effect on deflection was found to be higher for pavements with high relative stiffness and deflection in this case may reach 140% of its static value. Interestingly, the axle speed had no significant effect on the maximum stress.

TABLE OF CONTENTS

		Page
Acknowle	rdgin~n t	i
Abstract		i i
Table of	Contents	i∨
List of	Tables	viii
List of	Figures	i×
CHAPTER	1: INTRODUCTION	1
CHAPTER	2: OBJECTIVES AND SCOPE OF WORK	3
2.1	The Problem Statement	3
2.2	Objectives of the Study	3
2.3	Scope of Work	4
CHAPTER	3: LITERATURE REVIEW	6
3.1	Background	6
3.2	Stresses in Rigid Pavement	6
3.2.1	Warping Stresses	6
3.2.2	Frictional Stresses	9
3.2.3	Load Stresses	10
3.3	Design Methods of Rigid Pavement	22
3.3.1	Present PCA Design Method	23
3.3.2	New PCA Design Method	32
3.3.3	The 1986-AASHTO Design Method	44
CHAPTER	4: STATIC ANALYSIS OF RIGID PAVEMENT USING THE	
	FINITE FIRMENT METHOD	49

4.1	Introduction	49
4.2	Background to the FEM	49
4.3	Analysis of Rigid Pavement Slabs Using the FEM	51
4.3.1	The Element Stiffness Matrix	56
4.3.2	Assembly of the Overall Stiffness Matrix [K]	62
4.3.3	Shear Transfer Models	63
4.3.4	Modeling of Subgrade Soil	6 6
4.3.5	Load Vector	68
4.3.6	Nodal Displacement Vector	69
4.3.7	Final Stresses	69
4.4	Program Features	75
4.4.1	Loading	76
4.4.2	Mesh Generation	82
4.4.3	Check of Soil Separation	83
4.4.4	Final Stresses	8 5
4.4.5	Pavement Properties	85
4.5	Program Verification	8 6
CHAPTER	5: DYNAMIC ANALYSIS OF RIGID PAVEMENT SUBJECT	
	TO MOVING LOADS	90
5.1	Introduction	90
5.2	Equation of Motion	9 0
5.3	Dynamic Analysis of Rigid Pavement Slabs Using	
	the FEM	91
5.3.1	The Mass Matrix	92
5.3.2	The Damping Matrix	94
5.3.3	Reduction of Dynamic Matrices	98
5.3.4	Solution of the Equation of Motion	100