

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

POWERING POULTRY FARM USING BIOMASS AND SOLAR ENERGY

By

Eng. Mina Magdy Aziz Yousef

A Thesis submitted to the Faculty of engineering at Cairo university in Partial Fulfillment of the Requirements for the Degree of

Master of Science

in

Electrical Power and Machines Engineering

POWERING POULTRY FARM USING BIOMASS AND SOLAR ENERGY

By **Eng. Mina Magdy Aziz Yousef**

A Thesis Submitted to the Faculty of engineering at Cairo university in Partial Fulfillment of the Requirements for the degree of

Master of Science

in

Electrical Power and Machines engineering

Under supervision of

Prof. Dr. Ahmed Mohamed Ahmed Ibrahim Dr. Tarek Abdel Badi Baghdadi

Professor Electrical Power Engineering Department Faculty of Engineering, Cairo University

Assistant Professor Electrical Power Engineering Department Faculty of Engineering, Cairo University

Dr. Ahmed Mahmoud Mohamed El Shafei

Associate Professor Faculty of engineering, Ahram Canadian university

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2021

POWERING POULTRY FARM USING BIOMASS AND SOLAR ENERGY

By

Eng. Mina Magdy Aziz Yousef

A Thesis Submitted to the Faculty of engineering at Cairo university in Partial Fulfillment of the Requirements for the degree of

Master of Science

in

Electrical Power and Machines Engineering

Approved by the Examining Committee:

Prof. Dr. Ahmed Mohamed Ahmed Ibrahim

Thesis Main Advisor

Prof. Dr. Essam El-Din Abou El Dahab

Internal Examiner

Prof. Dr. Said Abdel Moneim Wahsh

(Electronics Research Institute)

External Examiner

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2021 **Engineer's Name:** Mina Magdy Aziz Yousef

Date of Birth: 14 / 04 / 1988 **Nationality:** Egyptian

E-mail: Eng.mina.magdy@hotmail.co.uk

Phone: 01008270021

Address: 33 Khairy street, Helwan, Cairo, Egypt.

Registration Date: 1/10/2017 **Awarding Date:** //2021

Degree: Master of Science in electrical power and machines

engineering.

Department: Electric Power Engineering

Supervisors: Prof. Dr. Ahmed Mohamed Ahmed Ibrahim

Dr. Tarek Abdel Badi Baghdadi

Associate professor. Dr. Ahmed Mahmoud Mohamed

El Shafei

Examiners:

Prof. Dr. Ahmed Mohamed Ahmed Ibrahim (Thesis Main advisor)

Prof. Dr. Essam El-Din Abou El Dahab (Internal Examiner)

Prof. Dr. Said Abdel Moneim Wahsh (External Examiner-Electronics Research Institute)

Title of Thesis: Powering poultry farm using biomass and solar energy.

Key Words: Biomass Energy; Grid; Hybrid; Poultry; Solar Energy.

Summary:

This thesis proposes a new economically feasible and resilient solution to power an existing poultry farm in the Western desert in Egypt by merging biomass energy with solar energy in the hybrid system connected to the national grid. The grid is used in this proposed project to add reliable and resilient dimensions to keep the stability of the farm's internal grid in addition to using it as energy storage instead of using batteries. Biomass energy is coming from converting poultry litter to electrical energy through the gasification process. The location of the farm in the western desert in Egypt has a great potential to combine solar energy with biomass energy to reduce the cost of energy.

The economic feasibility of this hybrid system is examined using the HOMER program and compared with different configurations. The result shows this configuration is the most optimal whether from an economic or technical perspective to maintain stabilize the farm's grid.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all resources used and have cited them in the references section.

Name: Mina Magdy Aziz Yousef Date: / / 2021

Signature:

DEDICATION

To my dad, mam and sister

ACKNOWLEDGMENTS

I would like to express my gratitude to Wadi Group for allowing me to use the available data to develop this thesis. Thanks to all teams for their constant support and kindness for their precious support.

I would like to express a deep sense of gratitude and thanks profusely to my supervisor Professor Ahmed Ibrahim and Assistant Professor Tarek el bogdady at the faculty of engineering Cairo University and Associate Professor Ahmed Shafie at the faculty of engineering Ahram Canadian University, without their wise counsel and able guidance, it would have been impossible to complete the present work.

My sincere thanks are extended to My Manager, Mr. Ahmed El Beheary Chief People Officer at WADI GROUP for encouraging me during all these years, and for his incredible generosity, I would like to thank my mother, dad, and my sister for their infinite love and their continuous support.

Thanks to all my Family, my colleagues, and all the people that I have met during my Erasmus period in the faculty of engineering.

Finally, special thanks to all the people that are not beside me anymore, but without whom I could not have done this.

TABLE OF CONTENTS

LIST OF TABLES	VI
LIST OF FIGURES	VII
LIST OF ABBREVIATIONS	VIII
LIST OF SYMBOLS	IX
ABSTRACT	XI
CHAPTER (1): INTRODUCTION	1
1.1 PREFACE	1
1.2 OBJECTIVES OF THE THESIS	2
1.3 BACKGROUND	2
1.4 THESIS OUTLINE:	4
CHAPTER (2): A LITERATURE REVIEW	5
2.1 INTRODUCTION	5
2.2 BIOMASS TECHNOLOGIES	5
2.2.1 Biomass Energy from poultry litters	7
2.2.2 The future usage of poultry litter as an energy source	16
2.2.3 Types of gasifiers:	18
2.3 PV ENERGY	22
2.3.1 PV Array	23
2.3.2 Inverter	24
2.3.3 Batteries	25
2.3.4 Controller	25
2.4 HYBRID SYSTEM	26
CHAPTER (3): MODELING AND OPTIMIZATION	27
3.1 ENERGY RESOURCES AND LOAD ASSESSMENTS	27
3.1.1 Biomass resources assessment	28
3.1.2 Solar resources assessment	30
3.1.3 Load assessment	32
3.2 SIMULATION AND OPTIMIZATION	37
3.2.1 Biomass generator Model	38

3.2.2	PV Model	39
3.2.3	Load Model	39
3.2.4	Grid Model	42
CHAPTER	R (4): OPTIMIZATION RESULTS AND DISCUSSION	43
4.1 IN	NTRODUCTION	43
4.2 O	PTIMIZATION RESULTS	44
4.2.1	General optimization results	44
4.2.2	Electrical production summary	51
4.2.3	Biomass generator	54
4.2.4	PV plant	58
4.2.5	Grid	60
4.2.6	Economic summary	62
CHAPTER	R (5): CONCLUSION AND FUTURE WORK	66
REFEREN	ICES	68

List of Tables

Table 3-1 Poultry Litter mass (Ton) produced by WADI GROUP 2017-2019	28
Table 3-2 Monthly Average Horizontal Irradiance (GHI) Data from NREL	31
Table 3-3 Equipment quantity and Consumption	33
Table 3-4 Number of operation fans daily during year per poultry house	34
Table 3-5 Schedule of operation for lighting, Pumps & Feeding lines	34
Table 3-6 Daily Load Profile kW of farm during year	35
Table 4-1 Cost Summary	46
Table 4-2 Production Summary of least cost system.	52
Table 4-3 Net Present Costs.	63
Table 4-4 Economics comparison.	65

List of Figures

Figure 2-1 Biomass energy conversion and energy outputs from different technologies	es.6
Figure 2-2 Products and pathways for biochemical and thermal processing of litter	7
Figure 2-3 Thermal process relation with heat and oxygen.	8
Figure 2-4 Direct combustion flow chart	11
Figure 2-5 Gasification flow chart	13
Figure 2-6 Fluidized bed gasifier	14
Figure 2-7 Up draught or counter-current gasifier.	18
Figure 2-8 Downdraught or co-current gasifier	19
Figure 2-9 Cross- draught Gasifier.	20
Figure 2-10 Fluidized bed gasifier.	21
Figure 3-1 Actual production of poultry Litter at WADI GROUP from 2017 till 2019	9 29
Figure 3-2 Average poultry litter in Ton	29
Figure 3-3 Farm location	30
Figure 3-4 Monthly Average Solar GHI Data from NREL	32
Figure 3-5 Technical Specification of CFBG series	38
Figure 3-6 PV model in HOMER	39
Figure 3-7 Daily load profile at each month.	40
Figure 3-8 OHLC graph of daily load monthly	41
Figure 3-9 D-map of hourly power consumption across the year	41
Figure 4-1 Cumulative Nominal Cash flow.	. 44
Figure 4-2 Optimization results of architecture and cost.	46
Figure 4-3 Optimization results of architecture and system parameters.	49
Figure 4-4 Monthly electric productions at 1 st year.	53
Figure 4-5 Monthly electric productions at 25 th year.	53
Figure 4-6 Electrical production of biomass generator.	54
Figure 4-7 the mean output of biomass generator (kW) and operating hours	55
Figure 4-8 fuel consumption of Biomass generator.	56
Figure 4-9 Biomass generator various trends.	57
Figure 4-10 PV plant mean output power.	58
Figure 4-11 PV plant energy production (kWh/Year)	59
Figure 4-12 PV plant Multi Trends.	59
Figure 4-13 Energy purchased and sold.	60
Figure 4-14 Energy charge Multiyear Trends.	61
Figure 4-15 Cost Summary.	
Figure 4-16 Cash Flow of the project by Component.	64

LIST OF ABBREVIATIONS

AC Alternating current

ARC Anti-reflection coating
CAPEX Capital expenditure

COE Cost of energy

CFBG Circulating Fluidized Bed Gasifier

CHP Combined Heat and Power

DC Direct current

D-map Data Map

DOCs Day-old chicks

GHI Global horizontal irradiance

HOMER Hybrid Optimization Model for Electric Renewables

HRES Hybrid renewable energy systems

LCOE Levelized cost of energy

LE Egyptian pound NPC Net present cost

NREL National renewable energy laboratory

O&M Operation and maintenance

OPEX Operational expenditure

PV Photo Voltic

USA United stated of America

ROI Return on investment
WG Wadi Group company