

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

AIN SHAMS UNIVERSITY

FACULTY OF ENGINEERING

Computer Engineering and Systems

Reliability and Scalability in SDN network

By

Mohamed Abbas Baioumy Aglan

Postgraduate Diploma in Computer Engineering and Systems
Faculty of Engineering, Ain Shams University, 2016

A Thesis

Submitted in partial fulfilment of the requirements of the degree of

Master of Science in Electrical Engineering

(Computer Engineering and Systems)

Supervised By

Prof. Dr. Ayman Mohamed Bahaa Eldin Sadek

Professor of Computer Engineering at Ain Shams University

Dr. Mohamed Ali Ali Mustafa Sobh

Professor Associate of Computer Engineering at Ain Shams University

Cairo, Egypt

October 2021

University

AIN SHAMS UNIVERSITY

FACULTY OF ENGINEERING

Computer Engineering and Systems

Name: Mohamed Abbas Baioumy Aglan

Thesis: Reliability and Scalability in SDN network

Degree: Master of Science in Electrical Engineering

(Computer Engineering and Systems)

Examiners' Committee Name and Affiliation **Signature** Prof. Dr. Sami Sayed Abdo Ghoniemy Vice Dean, Postgraduate and Research Faculty of Informatics & Computer Science the British University in Egypt Prof. Dr. Hani Mohamed Kamal Mahdi Professor of Computer Engineering at Ain Shams University Prof. Dr. Ayman Mohamed Bahaa Eldin Sadek Professor of Computer Engineering at Ain Shams University Dr. Mohamed Ali Ali Mustafa Sobh Professor of Computer Engineering at Ain Shams

Date:20 October 2021

Abstract

Mohamed Abbas Baioumy Aglan
Reliability and Scalability in SDN network
Master in Electrical Engineering, Computers Engineering and Systems
Ain Shams University 2020

Software Defined Networking (SDN) is a software-based solution which setup a unified control plane, as an intelligent network manager, to control the whole network devices that only forward data, instead of controlling each device alone which wastes time and effort. The conversion from the traditional networks to the SDN network has significant challenges that need a deep consideration regarding to reliability and scalability issues. The main core of SDN is the controller which participate and dominate in all logics and decision making. This big rule for controller has multiple issues should be clarified and fixed due to its centralization which affects negatively the Reliability and scalability during the heavy-duty tasks in SDN.

This thesis focuses on finding a network architecture enhance Reliability and Scalability issues through Multiple Domains with multiple controllers and Failover "MDCF" to eliminate the problem by dividing network Devices to multiple domains. Each domain is supervised by controller with failover controller.

This model made SDN more robust by improving the Reliability and Scalability in SDN by increasing the availability and decreasing the delay and lost packets.

Key words: Software Defined Networking (SDN), Reliability, Scalability, Failover, multiple controllers

Thesis Summary

Reliability and Scalability in SDN network

Mohamed Abbas Baioumy Aglan

Masters of Science in Electrical Engineering, Computers and Systems

Keywords: Software Defined Networking (SDN), Reliability, Scalability,

Failover, multiple controllers

In Chapter 1, we give an introduction about SDN and background, context, purposes and

significance, scope and Definitions mentioned in this thesis.

In Chapter 2, we discuss literature review and historical background regarding this thesis

including criticizing the traditional models as hierarchical controllers, distributed controllers

and failover controller. Finally, we summarize these architectures and mention the implication

that leads us to develop a new model in this thesis.

In Chapter 3, we describe in details our proposed model MDCF. We make an introduction

about Reliability solution without Scalability and Scalability solution without reliability. After

that, we go deeply in our model design and indicate the states of model and system

implementation.

In Chapter 4, we give a comprehensive evaluation with results and compare our model

MDMCF with single controller.

In Chapter 5, we make conclusion and discuss future work.

Thesis supervisors:

Prof. Dr. Ayman Bahaa Eldin Sadek

Dr. Mohamed Ali Ali Mustafa Sobh

ii

Acknowledgement

I would like to thank God for his blessings and that I'm able to finish this thesis.

Also, I would like to thank my supervisors Prof. DR. Ayman Bahaa and Dr. Mohamed Sobh for their advice, guidance and inspiration.

Also, I would like to thank my wife for supporting me and her cooperation.

Finally, I gift this thesis to my deceased parents to be satisfied with me.

Statement

This thesis is submitted as a partial fulfilment of Master of Science in Electrical Engineering, Faculty of Engineering, Ain shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Mohamed Abbas Baioumy Aglan
Signature

Date: 5 October 2021

Table of Contents

Abstr	act	1		
Thesi	is Summary	ii		
Ackn	owledgement	iii		
Stater	ment	iv		
Table	e of Contents	v		
List o	of Figures	vii		
List o	of Tables	viii		
List o	of Abbreviations	ix		
Chap	pter 1: Introduction	1		
1.1	Background	1		
1.2	Context	4		
1.3	Purposes	7		
1.4	Significance, Scope and Definitions	9		
1.5	Thesis Outline	10		
Chap	pter 2: Background and Literature Review	11		
2.1	Historical Background	11		
2.2	Hierarchical controllers	14		
2.3	Distriputed controllers			
2.4	Failover Controller	18		
2.5	Summary and Implications	20		
Chap	pter 3: Multiple domain with multiple controllers and failover "MD	CF"21		
3.1	Introduction 3.1.1 Motivation and Benefits 3.1.2 Single Controller Solution 3.1.3 Reliability Solution 3.1.4 Scalability Solution	21 22 22		
3.2	System Design	24		
3.3	States of Design 30 3.3.1 The steady state 31 3.3.2 The partial failover state 31 3.3.3 The full failover state 31 3.3.4 The partial failback state 35 3.3.5 The full failback state 35			
3.4	System Implementation	35		
Chap	pter 4: Evaluation and Experimental Results	37		
4.1	Single controller evaluation results.	41		

4.2	Multiple c	45			
4.3	Compariso	47			
Cha	pter 5:	Conclusions and future work	 51		
5.1	.1 Future Work				
Ref	erences		53		
خلص	مست		57		
لخص	اله		58		
شك			50		

List of Figures

Figure 1.1 SDN Layers	5
Figure 2.1 NSX Layer	12
Figure 2.2 APIC design for Cisco SDN	13
Figure 2.3 SDN Central controller	14
Figure 2.4 SDN Hierarchical controllers	15
Figure 2.5 SDN distributed controllers	17
Figure 3.1 single controller solution	23
Figure 3.2 Reliability Solution	23
Figure 3.3 Scalability Solution	24
Figure 3.4 normal state of system Design.	29
Figure 3.5 partial failover	32
Figure 3.6 alternative state of partial failover	32
Figure 3.7 full failover state	33
Figure 3.8 partial failback (Area 1)	33
Figure 3.9 partial failback (Area 2)	34
Figure 3.10 full failback state	34
Figure 4.1 Network diagram for SDN failover single controller	38
Figure 4.2 Network diagram for SDN failover multiple controllers	38
Figure 4.3 Miniedit Functionality	42
Figure 4.4 Plot for maximum delay for single controller	43
Figure 4.5 Plot for average delay for single controller	43
Figure 4.6 Plot for average jitter for single controller	44
Figure 4.7 Plot for average loss-burst size for single controller	44
Figure 4.8 Plot for maximum delay for multiple controllers	45
Figure 4.9 Plot for average delay for multiple controllers	46
Figure 4.10 Plot for average jitter for multiple controllers	46
Figure 4.11 Plot for average loss-burst size for multiple controllers	47
Figure 4.12 Maximum Delay single v/s multiple controllers	48
Figure 4.13 Average Delay single v/s multiple controllers	49
Figure 4.14 Average Jitter single v/s multiple controllers	49
Figure 4.15 Average loss-burst size single v/s multiple controllers	50

List of Tables

Table 4.1 Maximum Delay Results for Single and Multiple Controllers	48
Table 4.2 Average Delay Results for Single and Multiple Controllers	48
Table 4.3 Average Jitter Results for Single and Multiple Controllers	49
Table 4.4 Average Loss-burst size Results for Single and Multiple Controllers	50

List of Abbreviations

ACI: Application centric Infrastructure

APIC: Application Policy Infrastructure Controller

D-ITG: Distributed Internet Traffic Generator

IDS: Intrusion detection system

IOT: Internet of Things

IT: Information technology

LAN: Local Area Network

MDCF: Multiple Domains with Multiple Controllers and Failover

NetFPGA: Network field programmable gate array

NIB: Network information base

P2P: Peer to Peer

SDN: Software defined network

SSL: Secure Sockets Layer

STP: Spanning tree protocol

TLS: Transport Layer Security

UPS: uninterruptible Power Supplies

Vlans: Virtual Local Area Networks

Wan: Wide area network