

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

EFFECT OF NANOMINERALS ADDITION ON IN VITRO DIGESTIBILITY OF SOME ROUGHAGES

By

SHYMAA MOJAHED ABD EL-AAL HASHEM

B.Sc. Animal and Poultry Production, Fac. of Agric. Ain Shams Univ., 2012

A Thesis Submitted in Partial Fulfillment Of The Requirements for the Degree of

in
Agricultural Sciences
(Animal Nutrition)

Department of Animal Production Faculty of Agriculture Ain Shams University

Approval Sheet

EFFECT OF NANOMINERALS ADDITION ON IN VITRO DIGESTIBILITY OF SOME ROUGHAGES

By

SHYMAA MOJAHED ABD EL-AAL HASHEM

B.Sc. Animal and Poultry Production, Fac. of Agric. Ain Shams Univ., 2012

This thesis for Ph.D. degree has been approved by:
Dr. Ebtehag Ibrahim Mohamed AbouElenin Head Research, Animal Production Research Institute, Agricultural Research Center
Dr. Salwa Mahmoud Hamdy Prof. Emeritus of Animal Nutrition, Faculty of Agriculture, Ain Shams University
Dr. Etab Ramadan Ibrahim Abd El-Galil Professor of Animal Nutrition, Faculty of Agriculture, Ain Shams University

Date of Examination: 5/10/2021

EFFECT OF NANOMINERALS ADDITION ON IN VITRO DIGESTIBILITY OF SOME ROUGHAGES

By

SHYMAA MOJAHED ABD EL-AAL HASHEM

B.Sc. Animal and Poultry Production, Fac. of Agric. Ain Shams Univ., 2012

Under the supervision of:

Dr. Etab Ramadan Ibrahim Abd El-Galil

Professor of Animal Nutrition, Department of Animal Production, Faculty of Agriculture, Ain Shams University (Principal supervisor)

Dr. Hamdy Moussa Metwally

Lecture Emeritus of Animal Nutrition, Department of Animal Production, Faculty of Agriculture, Ain Shams University

ABSTRACT

Shymaa Mojahed Abd El-Aal: Effect of Nanominerals Addition on *In vitro* Digestibility of some roughages. Unpublished M.Sc. Thesis, Department of Animal Production, Faculty of Agriculture, Ain Shams University, 2021.

The thesis focuses on the evaluation of the addition of nanocobalt *In vitro* trials to dry matter, organic matter, cellulose and hemicellulose. Nanocobalt was added to fermentation at a rate of 0, 25, 50, 75, 100, and 125 percent of the animal requirements on a dry matter basis. For 24 hours, the standard ration (1:1 concentrate: clover hay) was incubated. The impact of adding 25 and 50 percent nanocobalt to some roughages (rice, bean, wheat, peanut, and bagasse) straws were then investigated using *In vitro* disappearance extent after 24 and 48 hours of dry matter, organic matter, cellulose, and hemicellulose. In vitro gas production results have shown that the values of DMD degradability (P<0.05) have increased by 50% and 75% while OMD highest value was nanocobalt by 25% and 50%. Nanocobalt has no effect on pH but had a greater effect on ammonia, TVF's values and the degradation of microbial protein cell wall components. Gas production was high in the control ration, cobalt (100%) and nanocobalt (25% and 50%) added. The values for all the various nanocobalt additives reported are high microbial protein (MP) and efficiency microbial protein (EM P) values. In comparison with any additional levels, nanocobalt with 25 and 50 percent output gas DM, NDF, ADF, cellulose, and hemicellulose were increased (P<0.05). The results indicate that adding nanocobalt increased gas, ammonia, TVF's, metabolizable energy, and cell wall components degradability. It showed a stronger effect on the disappearance of DM, OM, NDF, ADF, cellulose and hemicellulose by the addition of nanocobalt. Furthermore it was noted that the addition of 25% (P<0.05) of nanocobalt has a major impact on improving the disappearance of all roughages, other than bagasse with the addition of 50% nanocobalt *In vitro* DM and OM.

Keywords: *In vitro* gas production, nanocobalt, degradability, dry matter, cellulose, hemicellulose and roughages.

ACKNOWLEDGMENTS

Going to graduate school was one of the best decisions I have made so far. I would not be where I am today without all of the amazing people in my life who have helped support, encourage, and guide me throughout my collegiate academic experience. Without such an incredible support network, none of this would have been possible. First of all, I would like to thank my supervisor, *Dr. Etab Ramadan Ibrahim Abdt El- Galil*, Prof. of Animal Nutrition, Faculty of Agriculture, Ain Shams University, for supervising this work with his great knowledge and broad scientific vision in the field of my study and helped me to discover my passions and potential.

I wish to express my deepest appreciation to *Dr. Hamdy Moussa Mettwaly*, Prof. of Animal Nutrition, Faculty of Agriculture, Ain Shams University for supervising this work, he provided support, advice and guidance during my study. Thanks are also extended to the Department of Animal Production, Faculty of Agriculture, Ain Shams University

I would like to express my deep thanks and gratitude to my family, for their help and support, especially *my father*, where no wards describe his efforts and support, God please his pure spirit in Paradise.

CONTENTS

	Page
LIST OF TABLES	IV
1.INTRODUCTION	1
2. REVIEW OF LITERATURE	4
2.1.Roughages and its importance	4
2.2.Mineral elements and its importance	6
2.3.Improving the nutritional value of roughages	9
2.4. Nanomenirals	17
2.5. Using nanotechnology to improve the nutritional value of	
agricultural roughages	18
2.6. Application of nano minerals in the livestock industry	19
2.6.1.Nano mineral for animal nutrition	19
2.6.2.Nano mineral for improving immunity	21
2.6.3. Nano mineral for animal reproduction	21
2.7.Nano cobalt	22
3. MATERIALS AND METHODS	24
3.1. The first experiment: <i>In vitro</i> gas production technique	24
3.1.1. Degradability	24
3.1.2. Total gas production	25
3.1.3. Calculation	25
3.1.4. Chemical analysis of feed ingredients	26
3.1.5. Standard ration and nanocobalt addition	26
3.1.6. Nanocobalt characterization	27
3.2. The second experiment: <i>In vitro</i> disappearance	28
3.2.1. Roughages	28
3.2.2. Statistical analysis	28
4.Results and Discussion	30
4.1. The first experiment: <i>In vitro</i> gas production	30
4.1.1. Degradability	30

	Page
4.1.2. Fermentation parameters	31
4.1.3. Kinetics of gas production	34
4.2. The second experiment: <i>In vitro</i> disappearance	40
4.2.1. Rice Straw	40
4.2.2. Wheat Straw	42
4.2.3. Bagasse	43
4.2.4. Bean Straw	45
4.2.5. Peanut Straw	46
V. SUMMARY	54
VI. REFERENCES	59
ARABIC SUMMARY	