

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

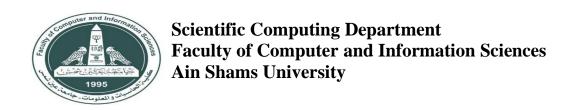
نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار



HANAA ALY



Computational Intelligence Method for Bones Classification and Abnormality Detection using X-ray Images

Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of PhD in Computer and Information Sciences

to

Department of Scientific Computing
Faculty of Computer and Information Sciences
Ain Shams University

By

Hadeer Hussein Ibrahim El-Saadawy

Assistant Lecturer at Scientific Computing Department, Faculty of Computer and Information Sciences, Ain Shams University

Under Supervision of

Prof. Dr. Mohamed Fahmy Tolba

Professor in Scientific Computing Department, Faculty of Computer and Information Sciences, Ain Shams University

Prof. Dr. Howida Abdel-Fattah Shedeed

Professor and head of Scientific Computing Department, Faculty of Computer and Information Sciences, Ain Shams University

Assoc. Prof. Manal Mohsen Tantawi

Associate Professor in Scientific Computing Department, Faculty of Computer and Information Sciences, Ain S2hams University

> November – 2021 Cairo

Acknowledgment

First of all, I would like to thank **GOD** for his endless blessings, for giving me the power and strength to complete this work and for giving me supportive people.

I would like to express my deep gratitude to my supervisors who I'm lucky to work under their supervision, they are a family not only supervisors who always support me in my down times and believe in me. **Prof. Dr. Mohamed Tolba** (God bless him), for his usual support, patience, encouragement, guidance and care, **Prof. Dr. Howida Shedeed** for her usual support, motivation and guidance and **Dr. Manal Tantawi** the one who I am lucky to have by my side not only a supervisor but an elder sister too, I extend my utmost gratitude for your technical and scientific help, continuous supportive guidance in both technical and non-technical issues.

I would like to thank **Dad** and **Mum** who have devoted themselves to support me in my whole life, not just this work for their endless passionate support and encouragement and the sleepless nights they spent to make it easier for me. And my sisters **Mahitab**, **Alaa** and **Esraa** for always being by my side in the downs and ups, they are the real meaning of "سَنَشُدُ عَضُدُكَ بِأَخِيك". Thanks, my sisters for your usual moral support, motivation and being always by my side.

My family, thanks for being the shoulder I can always depend on and for constantly pushing me to become the person I want to become and create the life I want for myself. This thesis dedicated to you, to make you proud. Without you, everything is nothing.

I would also like to thank the world best friends Yasmin Khaled, Ghada Hamed, Eman Hamdi, Alaa Atef, Alaa Salah and Reham El-Shahed for always being by my side. Thanks for your constant encouragement in the most difficult times, for accepting me through the tough time. And a special thanks to my colleague Bassel Safwat for his usual motivation and technical support.

Last but not least, all those supportive people are around me till this moment except my **Dad**, the most supportive person in my life. I know that you were waiting this moment, I wish you were still here so I could make you proud.

Abstract

Wrong diagnosis for bone abnormalities may lead to serious side effects. Moreover, exhausted, and over loaded doctors may miss some cases. Hence, Computer aided diagnosis systems have a vital role nowadays.

Based on the conducted comparative analysis: 1) There is a lack of published datasets that can be used as benchmark due to the difficulty of collecting data from hospitals; 2) Most of the previous studies consider only one bone due to the high variability in the shape of different bone types and also due to lack of data; 3) Most of the existing studies don't consider the abnormality type; 4) Most of the previous studies apply the traditional methods for feature extraction and classification, except for few new studies that utilize deep learning models (CNN models); 5) The models used in deep learning based studies are of huge depth which increases the training time and computation. Hence, a computer-aided diagnosis (CAD) system based on deep learning approach is proposed to consider the drawbacks of the literature. Bones of the upper extremities: namely, shoulder, humerus, forearm, elbow, wrist, hand, and finger are considered. All experiments have been carried out using the MURA database, the largest public dataset of bone x-ray images.

In this work, three main approaches are proposed and examined: 1) one stage – one task approach; 2) one stage – two tasks approach; and 3) two stage – two tasks approach using state-of-art techniques. In the one stage – one task approach, the model takes the x-ray image as an input and outputs whether the bone is normal or not. While in the one stage – two tasks approach, the model takes the x-ray image as an input and outputs both the bone type and whether the bone is normal or not. Finally, in the two stage – two tasks

approach the classification is done through two stages. The first stage is to classify the bone type and the second stage is to detect whether the classified bone is normal or abnormal. Thus, in the second stage, each bone has its own classifier for abnormality detection. 10 different pretrained models have been examined for the three approaches. The results show the superiority of the two stage – two tasks approach. The best average sensitivity and specificity achieved by the first stage is 95.78% & 99.45% and 83.25% & 83.25% for the second stage, respectively. However, this approach utilizes very deep models which affect the performance and computation time.

Hence, a novel, reliable, hybrid, two-stage method for bone x-ray classification and abnormality detection is introduced. Growing Neural Gas (GNG) network is combined with eight models built from scratch and inspired from VGG model to achieve the best performance and least computations possible. The features extracted from GNG are fed into a two-stage classification step. The first stage classifies a bone X-ray into one of seven types, after which it is directed according to type to one of seven classifiers trained to detect bone abnormality. Hence, the classification step consists of eight different models: one for classification and seven for abnormality detection. The best average sensitivity and specificity obtained for the first stage is 95.86% and 99.63%, respectively. For the second stage, the best average sensitivity and specificity obtained is 92.50% and 92.12%, respectively. These results are superior compared to state of art pretrained models. In addition, the computation and processing time are significantly decreased by the proposed scheme. Furthermore, to the best knowledge of researchers, the proposed method is the first to integrate seven bones together in the same scheme. Finally, the hierarchical nature of the proposed method

allows considering two problems together: bone classification and abnormality detection.

List of Publications

- 1- Hadeer El-Saadawy, Manal Tantawi, Howida A. Shedeed, and Mohamed F. Tolba. "A Hybrid Two-Stage GNG–Modified VGG Method for Bone X-Rays Classification and Abnormality Detection,". IEEE Access, vol. 9, pp. 76649-76661, doi: 10.1109/ACCESS.2021.3081915, 2021. IF: 3.367.
- 2- Hadeer El-Saadawy, Manal Tantawi, Howida A. Shedeed, and Mohamed F. Tolba. "Hybrid Two-Stage CNN-SVM Model for Bone X-Rays Classification and Abnormality Detection,". International Journal of Sociotechnology and Knowledge Development (IJSKD), vol. 13, 2021.
- 3- Hadeer El-Saadawy, Manal Tantawi, Howida A. Shedeed, and Mohamed F. Tolba. "One-Stage vs Two-Stage Deep Learning Method for Bone Abnormality Detection." In: Hassanien A.E. et al. (eds) Proceedings of the International Conference on Artificial Intelligence and Computer Vision (AICV2021). Advances in Intelligent Systems and Computing, vol 1377. Springer, Cham. https://doi.org/10.1007/978-3-030-76346-6_12, 2021.
- 4- Hadeer El-Saadawy, Manal Tantawi, Howida A. Shedeed, and Mohamed F. Tolba. "Deep Learning Method for Bone Abnormality Detection Using Multi-View X-rays." In: Hassanien A.E. et al. (eds) Proceedings of the International Conference on Artificial Intelligence and Computer Vision (AICV2021). Advances in Intelligent Systems and Computing, vol 1377. Springer, Cham. https://doi.org/10.1007/978-3-030-76346-6_5, 2021.

- 5- Hadeer El-Saadawy, Manal Tantawi, Howida A. Shedeed, and Mohamed F. Tolba. "A Two-Stage Method for Bone X-Rays Abnormality Detection Using MobileNet Network," In: Hassanien AE., Azar A., Gaber T., Oliva D., Tolba F. (eds) Proceedings of the International Conference on Artificial Intelligence and Computer Vision (AICV2020). Advances in Intelligent Systems and Computing, vol 1153. Springer, Cham. https://doi.org/10.1007/978-3-030-44289-7_35, 2020.
- 6- Hadeer El-Saadawy, Manal Tantawi, Howida A. Shedeed, and Mohamed F. Tolba. "Bone X-Rays Classification and Abnormality Detection using Xception Network." International Journal of Intelligent Computing and Information Sciences 21, no. 2 (2021): 82-95.

Table of Contents

Acknowled	gment	II
Abstract		III
List of Publ	ications	VI
Table of Co	ntents	.VIII
List of Figu	res	XI
List of Tabl	es	XIV
List of Abb	reviations	XIX
Chapter 1.	Introduction	2
1.1	Motivation	2
	1.1.1 Why Bones Fracture?	2
	1.1.2 Why X-rays?	3
	1.1.3 Why Deep Learning?	3
	1.1.4 Why developing CADs to detect bone abnormality?	
1.2	Research Objectives	5
1.3	Thesis Contributions	6
1.4	Thesis Outline	8
Chapter 2.	Literature Review & Comparative Analysis for Recent CAl	D
Methods	11	
2.1	Overview	11
2.2	Data Preparation	13
2.3	Performance Evaluation	
	2.3.1 Classification Evaluation Metrics	18
2.4	Review for Recent CAD Methods	19
	2.4.1 Conventional machine learning-based methods for	
	fracture detection	20
	2.4.2 Deep learning-based algorithms for fracture detection	n .22
2.5	Comparative Analysis	25
Chapter 3.	Hybrid Method Based on Pre-trained Models	33
3.1	Overview	33
	3.1.1 One Stage – One Task Approach	34
	3.1.2 One Stage – Two Tasks Approach	35
	3.1.3 Two Stage – Two Tasks Approach	37
3.2	Preprocessing	39
3.3	Features Extraction and Classification	
	3.3.1 Dense Convolutional Network (DenseNet) Model	41
	3.3.2 Inception Model	
	3.3.3 Residual Neural Network (ResNet) Model	42

	3.3.4 Residual Neural Network V2 (ResNetV2) Model	44
	3.3.5 MobileNet Model	44
	3.3.6 MobileNetV2 Model	46
	3.3.7 Xception Model	46
	3.3.8 InceptionResNetV2 Model	47
	3.3.9 VGG Model	47
	3.3.10 NASNET Mobile Model	48
3.4	CNN + Support Vector Machine (SVM) Layer	. 49
Chapter 4.	Hybrid Two-Stage GNG - Modified VGG Method	. 52
4.1	Overview	. 52
4.2	Preprocessing and Features Extraction using GNG	. 53
4.3	Classification	. 55
	4.3.1 Modified VGG utilized in Stage 1	56
	4.3.2 Modified VGG utilized for Shoulder Bone in Stage 2.	
	4.3.3 Modified VGG utilized for Humerus Bone in Stage 2.	57
	4.3.4 Modified VGG utilized for Finger Bone in Stage 2	
	4.3.5 Modified VGG utilized for Elbow Bone in Stage 2	58
	4.3.6 Modified VGG utilized for Forearm Bone in Stage 2	
	4.3.7 Modified VGG utilized for Wrist Bone in Stage 2	58
	4.3.8 Modified VGG utilized for Hand Bone in Stage 2	59
Chapter 5.	Experimental Results	. 61
5.1	Dataset	. 61
5.2	Evaluation Metrics	. 62
5.3	Experiment I – One Stage – One Task Method based on Pre-	
	trained Models	. 63
5.4	Experiment II – One Stage – Two Tasks Method based on Pr	re-
	trained Models	. 70
5.5	Experiment III – Two Stage – Two Tasks Method based on I	Pre-
	trained Models	. 77
5.6	Experiment IV - Hybrid Two Stage - Two Tasks Method bas	sed
	on Pre-trained Models	. 81
5.7	Experiment V - Hybrid Two-Stage CNN + SVM Method	. 83
5.8	Experiment VI - Hybrid Two-Stage GNG-VGG Method	. 86
5.9	Experiment VII - Hybrid Two-Stage GNG-Modified VGG	
	Method	. 88
Chapter 6.	Analysis and Discussion	. 93
6.1	Pre-trained Models Based Methods	. 93
6.2	GNG-modified VGG Based Method	. 96
Chapter 7	Conclusion and Future Directions	102

7.1	Conclusion	102
7.2	Future Directions	104
References		106

List of Figures

Figure 2-1. Main bone fracture types: A) Transverse, B) Oblique, C) Spiral,
D) Comminuted, E) Greenstick, and F) Impacted fracture [29]
Figure 2-2. Confusion matrix: 1) The columns correspond to a value
predicted by the utilized algorithm; and 2) The rows indicate the ground
truth value [22]
Figure 2-3. Deep learning is a branch of machine learning [22]
Figure 3-1. Classification Architectures of a) one stage – one task, b) one
stage – two tasks and c) two stage – two tasks approaches
Figure 3-2. One Stage – One Task Architecture
Figure 3-3. CNN model for one stage – one task approach
Figure 3-4. One Stage – Two Tasks architecture
Figure 3-5. CNN model for one stage – two tasks approach
Figure 3-6. Two Stage – Two Tasks hierarchical architecture
Figure 3-7. CNN model for two stage – two tasks approach (stage 1) 38
Figure 3-8. CNN model for two stage – two tasks approach (stage 2) 38
Figure 3-9. Image preprocessing: a, b, and c original images and d, e, and f
images after preprocessing
Figure 3-10. CNN Architecture [22]
Figure 3-11. A 5-layer dense block with a growth rate of $k = 4$. Each layer
takes all preceding feature-maps as input [39]
Figure 3-12. Original Inception module [40]
Figure 3-13. Residual learning: a building block [41]
Figure 3-14. Proposed Residual Unit [42]

Figure 3-15. The standard convolutional filters in (a) are replaced by two
layers: depthwise convolution in (b) and pointwise convolution in (c) to
build a depthwise separable filter [43]
Figure 3-16. MobileNetV2 Architecture [45]
Figure 3-17. The Modified Depthwise Separable Convolution used as an
Inception Module in Xception, so called "extreme" version of Inception
module (n=3) [46]
Figure 3-18. The general schema for scaling combined Inceptionresnet
modules [47]
Figure 3-19. VGG Model Architecture [48]
Figure 3-20. Architecture of the convolutional cells (NASNet-A) with $B=5$
blocks [49]
Figure 3-21. Mapping the input data points into a high dimension features
space [52]
Figure 3-22. Building hyperplanes to separate between the data points and
constructing the hyperplane that maximizes the margin [52] 50
Figure 4-1. The main steps of the proposed unsupervised/supervised two-
stage method
Figure 4-2. Image pre-processing: a, b and c are original images, and d, e
and f are images after applying GNG55
Figure 4-3. Modified VGG model for bone classification in stage 1 56
Figure 4-4. Modified VGG model for abnormality detection of Shoulder
bone classification in stage 2
Figure 4-5. Modified VGG model for abnormality detection of Humerus
bone classification in stage 2