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Abstract

Wrong diagnosis for bone abnormalities may lead to serious side
effects. Moreover, exhausted, and over loaded doctors may miss some cases.
Hence, Computer aided diagnosis systems have a vital role nowadays.

Based on the conducted comparative analysis: 1) There is a lack of
published datasets that can be used as benchmark due to the difficulty of
collecting data from hospitals; 2) Most of the previous studies consider only
one bone due to the high variability in the shape of different bone types and
also due to lack of data; 3) Most of the existing studies don’t consider the
abnormality type; 4) Most of the previous studies apply the traditional
methods for feature extraction and classification, except for few new studies
that utilize deep learning models (CNN models); 5) The models used in deep
learning based studies are of huge depth which increases the training time and
computation. Hence, a computer-aided diagnosis (CAD) system based on
deep learning approach is proposed to consider the drawbacks of the literature.
Bones of the upper extremities: namely, shoulder, humerus, forearm, elbow,
wrist, hand, and finger are considered. All experiments have been carried out
using the MURA database, the largest public dataset of bone x-ray images.

In this work, three main approaches are proposed and examined: 1) one
stage — one task approach; 2) one stage — two tasks approach; and 3) two stage
— two tasks approach using state-of-art techniques. In the one stage — one task
approach, the model takes the x-ray image as an input and outputs whether
the bone is normal or not. While in the one stage — two tasks approach, the
model takes the x-ray image as an input and outputs both the bone type and

whether the bone is normal or not. Finally, in the two stage — two tasks



approach the classification is done through two stages. The first stage is to
classify the bone type and the second stage is to detect whether the classified
bone is normal or abnormal. Thus, in the second stage, each bone has its own
classifier for abnormality detection. 10 different pretrained models have been
examined for the three approaches. The results show the superiority of the two
stage — two tasks approach. The best average sensitivity and specificity
achieved by the first stage is 95.78% & 99.45% and 83.25% & 83.25% for the
second stage, respectively. However, this approach utilizes very deep models
which affect the performance and computation time.

Hence, a novel, reliable, hybrid, two-stage method for bone x-ray
classification and abnormality detection is introduced. Growing Neural Gas
(GNG) network is combined with eight models built from scratch and inspired
from VGG model to achieve the best performance and least computations
possible. The features extracted from GNG are fed into a two-stage
classification step. The first stage classifies a bone X-ray into one of seven
types, after which it is directed according to type to one of seven classifiers
trained to detect bone abnormality. Hence, the classification step consists of
eight different models: one for classification and seven for abnormality
detection. The best average sensitivity and specificity obtained for the first
stage is 95.86% and 99.63%, respectively. For the second stage, the best
average sensitivity and specificity obtained is 92.50% and 92.12%,
respectively. These results are superior compared to state of art pretrained
models. In addition, the computation and processing time are significantly
decreased by the proposed scheme. Furthermore, to the best knowledge of
researchers, the proposed method is the first to integrate seven bones together

in the same scheme. Finally, the hierarchical nature of the proposed method

vV



allows considering two problems together: bone classification and

abnormality detection.
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