

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Microbiological Studies on Nosocomial Infections and its Control

A THESIS

Submitted in Partial Fulfillment of the requirement of the degree of

Master of Science in Microbiology

By

Hagar Mohamed Abdelrahman Ali

(B.Sc. Microbiology- Chemistry (2011), Ain Shams University)

Under supervision of

Prof. Dr. Fawkia Mohamed El-Beih

Professor of Microbiology - Department of Microbiology- Faculty of Science - Ain Shams University

Dr. Samar Samir Mohamed

Assistant Professor of Microbiology Department of Microbiology - Faculty of Science
- Ain Shams University

Department of Microbiology Faculty of Science Ain Shams University (2021)

بِشِهِ مِٱللَّهِ ٱلرَّحْمَزِ ٱلرَّحِيمِ

صدق الله العظيم

(سورة طه آية ١١٤)

Declaration

I declare that the thesis titled "Microbiological Studies on Nosocomial Infections and its Control" is my own work and has not previously been submitted to any other university. The references were being checked whenever possible; show the extent to which I have availed myself of the work of other authors.

Hagar Mohamed Abdelrahman

ACKNOWLEDGMENT

First and foremost, All the praise and thanks to **Allah** for assisting me to finish this work.

I would like to express my thanks to my supervisor Dr. Fawkia Mohamed El-Beih, Professor of Microbiology, Department of Microbiology, Ain Shams University, for her care, help and continuous advice.

A great thanks to Dr. Saadía M.Hassaneín Easa, Professor of Microbiology, Department of Microbiology, Ain Shams University, for her help, encouragement and continuous advice.

A deep thank to Dr. Samar Samír Mohamed, Associate Professor of Microbiology, Department of Microbiology, Ain Shams University, for her supervision, support, encouragement, valuable advices and constant help.

I wish to express my thanks to **Microbilogy Department** and all **my Colleagues** for their assistance, support and for providing a suitable environment during my work.

Finally, I want express my deepest thanks to my mother, my father, my brother and my sisters for their love, help and support over the years, special thaks to Mohamed El-Deweek my husband for his continuous support and help.

Abstract

Abstract

infections (hospital-acquired infections) Nosocomial considered a major public health challenge. They cause severe financial problems and sometimes deaths in hospital settings especially in developing countries. A total of 350 samples were collected from different sites located in three governmental hospitals in Cairo. Handwashing sink was the most contaminated site followed by computer keyboards and ultrasonic machines. According to viteck, bacterial isolates were identified as Acnietobacter baumanii. Bacillus cereus, Bacillus subtilis, Escherichia coli, Klebsiella pneumonia, Staphylococcus Pseudomonas auerignosa, and aureus Staphylococcus saprophyticus. Fungal isolates were identified by macro and micro morphological characteristics as Aspergillus flavus, Aspergillus fumigatus, Aspergillus niger, Aspergillus terrus. Cladosporium herbarum, Fusarium dimerum, Fusarium nivale, Fusarium oxysporum, Fusarium proliferatum, Penicillium carneum, Penicillium flavigenum, Penicillium melanoconidium, Penicillium sclerotigenum, Penicillium viridiactum and Rhizopus stolonifer.

Staphylococcus aureus and Klebsiella pneumonia were the most common isolated bacteria while Aspergillus niger was the most common fungus isolated from all studied sites. Synthetic

Antimicrobial agents are widely used to fight microbial infections with some limitations and toxicity, consequently, many researches focused on new antimicrobial substances from natural plants sources. Antimicrobial activity of both natural (*Eucalyptus* leaves extract and Garlic extract), synthetic antimicrobial agents (Chloramphenicol, Amoxicillin and Amphotericin B) and their mixtures were tested against pathogenic microbial species using agar well diffusion method.

Bacillus cereus was the most sensitive bacterial species to garlic extract while Staphylococcus aureus and Bacillus cereus were the most sensitive bacterial species to Eucalyptus leaves extract. Obviously, mixtures of synthetic and natural antibacterial agents showed synergetic effect whereas an antagonistic effect was observed with mixtures of both natural extracts against bacterial pathogens. On the contrary, both natural extracts possess very weak activity against isolated fungal pathogens, in addition the mixtures of natural and synthetic antifungal agents showed antagonistic activity.

List of Contents

List of Abbreviations	VII
List of Figures	X
List of Tables	XIII
Aim of work	XV
Chapter 1. Introduction	2
Chapter 2. Literature Review	9
2.1. Nosocomial infections	9
2.2. Brief history of Nosocomial infections	9
2.3. Types of nosocomial infections	10
2.3.1. Clostridium difficile infections	11
2.3.2. Bloodstream infections (BSIs)	11
2.3.3. Catheter-associated urinary tract infections (CAUTIs)	12
2.3.4. Surgical Site Infections (SSIs)	13
2.3.5. Ventilator-Associated Pneumonia (VAP)	14

2.4. Epidemiology of nosocomial infections	15
2.5. Sources and Transmission of Nosocomial Infections	17
2.5.1. Microflora of patient	18
2.5.2. Patient and staff	19
2.5.3. Environment	19
2.5.4. Surfaces	19
2.5.5. Medical charts	21
2.5.6. Equipment	21
2.6. Agents of nosocomial infections	22
2.6.1. Staphylococcus aureus	22
2.6.2. Escherichia coli	23
2.6.3. Pseudomonas aeruginosa	24
2.6.4. Fungal parasites	25
2.7. Method for identification of bacteria	28

2.7.1. Vitek 2 compact system	28
2.8. Prevention and Control	30
2.9. Improved cleaning and disinfection	32
2.10. Antimicrobial agents and resistance	33
2.10.1. Use of appropriate antimicrobial agent	34
2.10.2. Breif history of antibiotic	34
2.10.3. Antibiotic resistance	35
2.10.4. Antibiotic control policy	36
2.10.5. Natural antimicrobials	37
2.10.6. Synthetic Antimicrobials	44
Chapter 3. Materials and Methods	52
3.1 Materials	52
3.1.1. Media used for isolation and identification of bacteria	52
3.1.2. Media used for isolation and identification of fungi	56

3.1.4. Antimicrobial materials	61
3.2. Methods	62
3.2.1. Collection of samples	62
3.2.2. Preparation and Isolation of bacterial isolates	64
3.2.3. Identification of the bacterial isolates	64
3.2.4. Isolation and purification of fungal isolates	67
3.2.5. Identification of the fungal isolates	67
3.2.6. Natural antimicrobials	68
3.2.7. Bacterial inoculum preparation	69
3.2.8. Fungal inoculum preparation	70
3.2.9. Antimicrobial activity using well diffusion method	70
3.3 Statistical method	71
Chapter 4. Results	73

4.1. Isolation of bacteria	73	
4.2. Identification of bacterial isolates	74	
4.2.1. Macroscopic and Microscopic characteristics of obtained Gram-positive and Gram-negative bacterial isolates	74	
4.2.2. Identification of bacterial isolates using Vitek 2 compact system	85	
4.3. Distribution of isolated bacterial		
species from different selected hospitals	95	
sites		
4.4. Isolation of pathogenic fungal species	97	
4.5. Identification of fungal isolates	98	
4.6. Distribution of fungal isolates among	400	
isolated sites	109	
4.7. Antimicrobial activity of synthetic,		
natural extracts and their mixtures	112	
against bacterial and fungal species		
4.7.1. Antibacterial activity of natural,		
synthetic extracts and their mixtures	112	
against pathogenic bacterial species		
4.7.2. Antifungal activity of synthetic and	118	
natural extracts and their mixtures against	118	