

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Cairo University

Faculty of Veterinary Medicine

Department of Microbiology

Studies on Molecular Detection of Acinetobacter species from meat

Thesis presented by

Aya Ahmed Abdou Ahmed

Bachelor of Veterinary Medical Sciences

For The degree of

Master of Veterinary Medical Sciences, Microbiology Cairo University

Under supervision of **Prof. Dr. Kamelia Mahmoud Osman**

Professor of Microbiology Faculty of Veterinary Medicine 'Cairo University

Dr. Heba Naim Mohamed

Assistant Professor of Microbiology Faculty of Veterinary Medicine Cairo University

Cairo University

Faculty of Veterinary Medicine

Approval Sheet

This is to certify that the dissertation presented by **Aya Ahmed Abdou Ahmed** to Cairo University for the Master degree in Veterinary Medical Sciences (Microbiology) has been approved by the examining Committee:

Examining and indgment committee:

1- Prof. Dr / Walid Hamdy Hassan

Professor and Chairman of the Department of Bacteriology, Mycology and Immunology- Faculty of Veterinary Medicine -Beni Suef University

2- Prof.Dr / Mahmoud El-Sayed Jamil Hashad

Professor and Chairman of the Department of Microbiology- Faculty of Veterinary Medicine – Cairo University

3- Prof. Dr / Kamelia Mahmoud Othman

Professor of Microbiology - Faculty of Veterinary Medicine - Cairo University

4- Dr / Heba Naim Mohamed Deif

Assistant professor of Microbiology- Faculty of Veterinary Medicine - Cairo University

Acknowledgment

All thanks to ALLAH, the most gracious the most merciful, for all gifts gave me all over my life and for giving me the patience and power to carry out this work.

No words can express my sincere gratitude and appreciation to:

Dr. Kamelia Mahmoud Osman

Professor of Microbiology, Faculty of Veterinary Medicine, Cairo University. I would like to thank her for helping and supporting me during every step in my work.

I would like to express my profound gratitude and great appreciation to:

Dr. Heba Naim Mohamed

Assistant professor of Microbiology, Faculty of Veterinary Medicine for her wise guidance, keen supervision, Continuous encouragement and sincere help and personal supervision for the whole thesis. Also, for reviewing, correcting and finalizing the work document.

I wish to express my deep gratitude and sincere thanks to all members of Microbiology Department, Faculty of Veterinary Medicine, Cairo University.

I would like to thank, **Dr Yousrea M. Hashim**, cheif Researcher, Department of Mycoplasma, Animal Health Research Institute, ARC Dokki, for offering her time and her support to finish my studies successfully and assisted me during this project.

Dedication

I would like to press my appreciation and gratitude to my family members for their patience, help and encouragement, especially my husband who supported me too much during this work. May Allah bless them more, grant them with the best life and accept their good deeds.

Cairo University
Faculty of Veterinary medicine
Department of Microbiology

Name: Aya Ahmed Abdou Ahmed

Nationality: Egyptian Birthday: 4/10/1993

Place of birth: Cairo Governorate

For the degree of: M.V. Sc (Microbiology)

Thesis title: Studies on Molecular Detection of Acinetobacter species

from meat

Supervisors: Dr. Kamelia Mahmoud Osman

Professor of Microbiology, Faculty of Veterinary Medicine, Cairo University **Dr. Heba Naim Mohamed**

Assistant professor of Microbiology, Faculty of Veterinary Medicine, Cairo University

Abstract:

Although food is very important for the human life, it may be life threatening. Foodborne diseases are spreading worldwide through the increasing rate of fresh and undercooked food consumption. Foodborne pathogens including many types of bacterial species. This study was conducted to determine; the prevalence of *Acinetobacter* species isolated from meat samples, its phenotypic characteristics, its antimicrobial resistance profile; and their genotypic characteristics. A total of 110 samples collected from chicken (n=50), beef (n=44), rabbit (n=10), and mutton (n=6) were examined bacteriologically. The suspected colonies were identified biochemically then tested for their antimicrobial resistance, biofilm formation, hemolytic activity then confirmed by PCR for some genes; rpoB, traT, fimH, and epsA. 9 Acinetobacter species (8.2%) were recovered where, 55 of examined samples were non-lactose fermenter with an incidence of 50%, 29 of examined samples were late lactose fermenter with an incidence of 26% and the rest of samples showed no growth or were lactose fermenter. The ceftriaxone, imipenem, showed high resistance to ticarcillin/Clavulanic acid in a percentage of 89%, 77.8%, 66.7% and 66.7 %, respectively. While, low resistance was found to Sulfamethazole/trimethoprim, doxycycline and amikacin in a percentage of 44.4%, 33.3% and 11.1%, respectively. However, the isolates showed no resistance to ciprofloxacin. All the isolates were MDR with MDR_{index} (more than 0.5), only one isolate was weak biofilm producer but, no isolate was able to the hemolysis of the sheep RBCS. 88.9% of the isolates expressed traT and fimH genes but, only 5.6% of the isolates could express epsA gene. It can be concluded that Acinetobacter species could be isolated from meat samples of animal origin in Egypt.

Key words: Acinetobacter-species, meat, AST, PCR, virulence.

Contents

Topic Page. No
Abstracti
List of contentsii
List of figuresiv
List of abbreviationsv
1. Introduction1
2. Review of literatures
2.1. Acinetobacter: a historical brief6
2.2. Recent classification of <i>Acinetobacter</i> 8
2.3. Biology and cultural characteristics of <i>Acinetobacter</i> species9
2.4. Ecology of <i>Acinetobacter</i> species12
2.5. Acinetobacter Virulence factors16
2.6. Resistance of <i>Acinetobacters</i> 21
2.7. Antibiotic Resistance of <i>Acinetobacter</i> species23

Topic	Page. No

The Published paper	27
Discussion	35
Summary	40
Conclusion	43
References	44
الملخص العربي	
المستخلص العربي	ix

List of figures

No.	Title	Page no
1	Acinetobacter baumannii colonies growth on Blood Agar	11
2	Schematic model of bacterial colonization of the gastric mucosa.	13
3	Surface motility of <i>Acinetobacter baumannii</i> strains on semi-solid media.	20
4	Types of resistance of <i>Acinetobacter</i> to antimicrobial agents	25

List of Abbreviations

ACB Acinetobacter calcoaceticus-baumannii

AK Amikacin

APC Antigen presenting cells

ATP Adenosine triphosphate

BA Blood agar

BIs Blood stream infections

BHI Brain heart infusion

bp base pair

CIP Ciprofloxacin

CLSI Clinical and Laboratory Standards Istitute

COT Sulfamethoxazole/Trimethoprim

CTR Ceftriaxone

CTX Cefotaxime

DNA Deoxyribonucleic acid

DO Doxycycline

EDTA Ethylene Diamine Tetra Acetic Acid

ELISA Enzyme Linked Immunosorbent Assay

EMB Eosin methylene blue agar

HA Herellea agar

ICU Intensive Care Units

IPM Imipenem

LAM Leeds *Acinetobacter* medium

LB Luria Bertani

LPS	Lipo poly saccharides	
M.A	MacConkey agar	
MCP	Macrophage chemotactic protein	
MIP	Macrophage inflammatory protein	
OD	Optical Density	
OMP	Outer membrane proteins	
OMV	Outer membrane vesicles	
PCR	Polymerase Chain Reaction	
RNA	Ribonucleic acid	
rRNA	Ribosomal ribonucleic acid	
ROS	Reactive oxygen species	
SOM	Somato statin	
TIM	Ticarcillin/Clavulanic acid	
TLR	Toll-like receptor	
ТСР	Tissue culture plate	
VAP	Ventilator-calcoaceticus-baumannii	

Introduction

1. Introduction

Acinetobacters are major concern because of their acquired resistance to multiple antimicrobial drugs and disinfectants. They are characterized by rapid transformation, survival despite of dessiccation so persist for long time in the environment especially hospital environment (Wagner et al., 1994).

The genus *Acinetobacter* belongs to the bacterial genera which are normally found in many foods and food products, especially refrigerated fresh ones. Because the genus is considered to be ubiquitous, the primary food-source environments are soil and water. However, plants and plant products, animal hides, human skin, air and dust can also be considered as sources to foods contamination (**Jay**, **1996**).

Acinetobacters are most frequently reported in fresh meat and poultry. Because the internal tissues of healthy slaughtered animals are normally free of bacteria at the time of slaughter, the stick knife, animal hide, hand of handlers (skin), storage containers and environments (water) must be considered as primary sources. Ground meat has a greater surface area therefore the growth of aerobic organisms, including Acinetobacter, is favored. In general, low temperature favors typical spoilage by flora. On organs, like liver, kidney, heart, tongue of bovine, porcine and ovine origins, the surface numbers of microorganisms range from log₁₀ 2-5 cm². *Acinetobacter* has been reported to belong to the initial biota (**Bouvet and Grimont, 1986**).

The incubation temperature is the main reason that only certain bacterial genera are found on spoiled meat.