

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Cairo University Faculty of Veterinary Medicine Department of Virology

Comparative Molecular Studies on FMD Virus in Some Egyptian Governorates

A Thesis Submitted by

Khaled Abd-El Aziz Mohammed Abd-El Aziz

B.V.Sc., Faculty of Veterinary Medicine, Cairo University, 2012

For Master Degree in Veterinary Science (M.V.Sc.), (Virology)

Under Supervision of

Prof. Dr. Ahmed Abd El-Ghani El-Sanousi

Professor of Virology
Faculty of Veterinary Medicine
Cairo University

Dr. Ayman Hanae El-Deeb Assistant Professor of Virology Faculty of Veterinary Medicine Cairo University Dr. Momtaz Abd El-Hady Shahein Chief Researcher of Virology & Director Animal Health Research Institute (AHRI) Agriculture Research Center (ARC)

قسم الفيروسات

Approval Sheet

This is to approve that Thesis presented by

Khaled Abdelaziz Mohamed Abdelaziz

For the degree of MV.Sc.. (Virology) has been approved by the examining committee

Prof. Dr. Saad Sharawi Ali Sharawi

Professor and Head of the Department of Virology

Faculty of Veterinary Medicine Moshtohour, Banha University S.S. ASharam

Prof. Dr-Hussein Aly Hussein

Professor of Virology and Vice- Dean of Graduate
Studies and Research, Faculty of Veterinary Medicine
Cairo University

Prof. Dr-Momtaz Abdelhady Shaheen

Director of Animal Health Research Institute Agricultural Research Center. (Supervisor)

Montey 8 haherin

Prof. Dr-Ayman Hanea El-Deeb

Ass. Prof. of Virology Faculty of Veterinary Medicine Cairo University (Supervisor) Ayman EI-Deeb

Prof. Dr-Ahmed Abd El-ghani El-Sanousi

Professor of Virology Faculty of Veterinary Medicine Cairo University (Supervisor)

2021

الرمز البريدي: 12211 فاكس: 35725240

العنوان: كلية الطب البيطرى- الجيزة- مصر تليفون: 3571309- 3571305

Cairo University Faculty of Veterinary Medicine Department of Virology

Supervision sheet

Prof. Dr. Ahmed Abd El-Ghani El-Sanousi Professor of Virology Faculty of Veterinary Medicine Cairo University

Dr. Ayman Hanae El-Deeb. Assistant Professor of Virology Faculty of Veterinary Medicine Cairo University, Egypt

Dr. Momtaz Abd-El hady Shahein Chief Researcher of Virology & Director Animal Health Research Institute (AHRI) Agriculture Research Center (ARC)

Cairo University Faculty of Veterinary Medicine Department of Virology

Name: Khaled Abd-El Aziz Mohammed Abd-El Aziz

Date and place of birth: 12-5-1990, Giza

Nationality: Egyptian

Title of thesis:" Comparative Molecular Studies on FMD Virus in Some

Egyptian Governorates"

Scientific degree: Master's Degree (M.V.Sc.

Supervisors:

Prof. Dr. Ahmed Abd El-Ghani El-Sanousi

Professor of Virology, Faculty of Veterinary Medicine, Cairo University

Dr. Ayman Hanae El-Deeb

Assistant Professor of Virology, Faculty of Veterinary Medicine, Cairo University

Dr. Momtaz Abd-El Hadv Shahein

Chief Researcher of Virology & Director, Animal Health Research

Institute (AHRI),

Agriculture Research Center (ARC)

Abstract

Foot and mouth disease (FMD) is a cross-border Transmissible viral disease affecting a wide variety of animals. Egypt is under the potential risk of infection from neighboring countries with a background of the disease epidemics from 1950 till now although a comprehensive vaccination programme has been adopted. The present study aims to make a molecular comparison between foot and mouth disease virus in some Egyptian governorates, 14 FMD suspected samples were collected from diseased animals in the period from 2016 to 2019, the samples were FMD positive by Antigen detection ELISA, subjected for trials of FMDV isolation on the BHK-21 cell line, RT-PCR serotyping, and VP1 sequencing VP1 encoding region sequencing and phylogenetic analysis were performed for some representative samples for each serotype. Antigen detection serotyping ELISA results were three samples positive for A serotypes, three for serotype O, and eight for serotype SAT2. The isolation attempt was successful for the A and O serotypes on the BHK-21 cell line. RT-PCR confirmed the ELISA results for both samples and tissue culture harvest. VP1 sequencing and phylogenetic analysis revealed that all serotype O strain belonged to topotype East Africa 3(EA-3) and were identical to each other with a percentage of 91 to 94%, while serotype A belonged to topotype Africa, lineage G-IV with 97 to 99 identity to each other, and serotype SAT2 samples were identical to each other with a percentage of 99% and were related with a percentage of 96% identity to topotype VII, Lib-12 a lineage that varies from previously recorded Egyptian Ghb-12 lineage G-VII strains.

Keywords: FMDV; ELISA; RT-PCR; Phylogenetic analysis; vaccine.

Dedication

Every challenge work needs self-efforts as well as the guidance of elders specially those who were very close to our heart

My humble effort dedicate to my sweet and loving

..... My Mother's Soul,

..... My Father's Heart

..... My Twin Sister

.... My Dear Brothers

..... My Life Twin, My Wife

..... My Spirit, Mariam

Whose affection, love, encouragement and prays of day and night make me able to get such success and honor

Along with all hardworking and respected

Teachers.

Acknowledgment

All thanks to our merciful God ALLAH who gave me all good things in my life and who put me in that great position that is not my merit, and lastly but not finally gave me the ability and patience to finish this work.

My endless prayers and thanks to the greatest person all over all eras our prophet **Mohammed** who has been sent to us by the most important gift in our life (Islam).

I will never forget the great efforts awarded by **Prof. Dr. Ahmed Abd El-Ghani El-Sanousi,** Professor of Virology, Virology Department, Faculty of Veterinary Medicine, Cairo University. His effective guidance and continuous support lead the way for any progress of the present thesis. Finally, special thanks are dedicated to him for giving me the opportunity to allover any other commitment.

I will never forget the efforts awarded by **Dr. Ayman Hanae El-Deeb**, assistant Professor of Virology, Faculty of Veterinary Medicine, Cairo University. I think that I learned from him many things in science and life in general during his supervision for my theses which will play a major role in designing my future life. I thank him for all his effective guidance and continuous support to lead the way for any progress of the present thesis.

Great thanks should be admitted to **Dr. Momtaz Abd-El Hady Shahein**, Chief researcher of virology and director of Animal Health Research Institute (AHRI), for his precious supervision and technical support. Endless donation and continuous encouragement throughout my postgraduate study.

Special thanks and appreciation to all members of Virology Department, Faculty of Veterinary Medicine, Cairo University, and also all members of virology Department, Animal Health Research Institute – Dokki – Giza, for their endless continuous cooperation and encouragement during finishing my thesis.

Specially, I would like to thank **All Members of the Genome Research Unit**, Animal Health Research Institute – Dokki – Giza for all help and facilities they provided to complete this work.

List of Contents

Content	Page
Chapter (1): Introduction	
Chapter (2): Review of literature	
2.1. History of FMD	6
2.1.1. history of FMD in the world	6
2.1.2. global distribution of FMD	8
2.1.3. History of FMD in Egypt	9
2.2. FMDV virus agent	11
2.2.1. virus morphology and structure	11
2.2.2 virus classification	13
2.2.2.1.FMDV Serotypes	14
2.2.2.FMDV Topotypes	15
2.2.3. Genome organization	18
2.2.3.1.The untranslated regions	19
2.2.3.2. The open reading frame (ORF)	20
2.2.4. Viral proteins	21
2.2.4.1. The Lpro protein	21
2.2.4.2.The structural proteins	22
2.2.4.3. The non-structural proteins	24
2.2.5. FMDV Antigenic sites	26
2.2.6.FMDV genetic variation	27
2.2.7. Virus stability	27
2.2.8. FMDV Replication and replication cycle	30
2. 3. Foot and Mouth Disease	36
2.3.1. Epidemiology of FMD	36
2.3.1.1.Host range	36
2.3.1.2.Modes of transmission	36
2.3.1.3.Incubation period	38
2.3.1.4.Clinical picture of FMD	38
2.3.1.5.Subclinical FMD infection	40
2.3.1.6.Persistent infection	40
2.3.2.FMD Pathogenesis	41

Content	Page
2.4.FMDV Immune response	43
2.4.1.Innate immune response	43
2.4.2.Humoral immune response	45
2.4.3.Cell mediated immune response	46
2.5.FMDV Evasion of the immune system	47
2.6.FMD Diagnosis	51
2.6.1.Clinical diagnosis	51
2.6.2.Laboratory diagnosis	52
2.6.2.1.Samples	52
2.6.2.2.Virus isolation	54
2.6.2.3. Virus detection	54
2.6.2.3.1.Antigen detection	54
2.6.2.3.2.FMDV Nucleic acid detection	57
2.6.2.3.3.Serological tests	63
2.7.FMD Control	
2.7.1.Control by Vaccines	68
2.7.2. Patterns and Innovations in FMDV Vaccines	
2.7.3.FMDV Vaccination failure	
2.7.4.Control by stamping out	81
2.7.5.Control of FMD in developing countries	
2.7.6. Significance of carriers in control of FMD	82
Chapter (3): Published papers	84
Chapter (4): Discussion	103
Chapter (5): Conclusion and recommendation	107
Chapter (6): English Summary	108
Chapter (7): References	111
Appendix	153
Arabic summary	

List of Tables

Table	Title	Page
1	Virus pool and Status of foot-and-mouth disease worldwide in 2021	8
2	The most important FMDV antigenic sites	27
3	Type of samples used in the recent study	153

List of Figures

Figure	Name of Figure	Page
1	Virus pool and Status of foot-and-mouth disease worldwide in 2021.	9
2	The surface structure of FMDV capsid proteins, the subunits, and the virus capsid.	
3	Schematic diagram of the FMDV genome	19
4	The life cycle of picornaviruses.	31
5	Progressive Control Pathway for foot and mouth disease	68
6	Characteristic of an ideal FMD vaccine	69
7	Patterns and Innovations in FMDV Vaccines	71
8	FMD mouth lesion	153
9	Mocked BHK- 21 monolayer cells used as a control for isolation of FMDV,	154
10	Different fields of BHK-21 monolayer cells inoculated with positive antigen detection ELISA sample for FMDV showing the beginning of CPE	155
11	BHK-21 monolayer cells inoculated with positive antigen detection ELISA sample for FMDV showing good CPE	156
12	Third passage FMDV sample showing good CPE (cell rounding, granulation, and detachment) 18 hours post-inoculation.	157
13	Agarose gel electrophoresis of RT-PCR products.	158

List of Abbreviation

Abbreviation	Meaning
aa	Amino acid
Ab	Antibodies
Ag	Antigen
AUG	Adenine-uracil-guanine
BEI	binary ethyleneimine
BHK	Baby Hamster Kidney Cell line
bp	base pair
cDNA	Complementary deoxyribonucleic acid
C-ELISA	Competitive ELISA
CFT	Complement Fixation Test
CPE	Cytopathic effect
CRE	Cis-acting replication element
DAS ELISA	Double antibody sandwich ELISA
DIVA	Differentiation between infected and vaccinated animals
Elf-4G	Eukaryotic initiation factor 4 G
ELISA	Enzyme Linked Immunosorbent Assay
FAO	Food and Agriculture Organization
FMD	Foot and Mouth Disease
FMDV	Foot and Mouth Disease Virus
GAGs	Glycosaminoglycans
G3BP	GTPase-activating protein-binding proteins
hpi	hour post-infection
IBRS	Instituto Biologico Rim Suino
ICAM	Intercellular Adhesion Molecule
IgG	Immunoglobulin-G
IFNs	Interferons
IFN-α/β	alpha/beta interferon
IRES	Internal Ribosome entry site
IRF	interferon regulatory factor
IS	Indirect Sandwich ELISA
ISGs	interferon-stimulated genes
LFD	Lateral Flow Device
LK	Lamb Kidney
LPB-ELISA	Liquid Phase Blocking ELISA
LPro	Leader Proteinase
MAB	Monoclonal Antibody
MEM	Minimal Essential Medium

Abbreviation	Meaning
MHC	major histocompatibility class
mPCR	Multiplex PCR
MSD	Monoclonal antibody – Based Sandwich direct ELISA
NCEs	Non-Coding Elements
NCRs	Non-Coding Regions
NEMO	NF- _k B essential modulator
NK	Natural Killer cell
NSPs	Non-Structural Proteins
OIE	Office International Des Epizooties
OP	Esophagopharyngeal
ORF	Opening Reading Frame
PABD	Poly A Binding Protein
PBT	Primary Bovine Thyroid
PBS	Phosphate Buffer Saline
PCP-FMD	Progressive Control Pathway for FMD
PCR	Polymerase Chain Reaction
PH	Potential of Hydrogen
PI	Percentage Inhibition
PKR	RNA-dependent protein kinase
PTB	Polypyrimindine tract binding protein
RGD	Argenin – Glyan – Aspartic
RLRs	RIG-I like receptors
RNA	Ribonucleic Acid
RT-PCR	Reverse Transcriptase Polymerase Chain Reaction
RT-RPA	Real-time reverse transcription-recombinase polymerase amplification
SAT	South African Territories
SG	Stress Granule
SNT	Serum Neutralization Test
SPC ELISA	Solid Phase Competitive ELISA
SPs	Structural Proteins
TCID	Tissue culture infection dose
UTR	Untranslated region
UV Light	Ultra Violet Light
VNT	Virus Neutralization Test
VP1	Virus Protein
WRL	World Reference laboratory
μL	Microliter