

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

ENERGY HARVISTING MAXIMIZATION BY INTEGRATION OF DG BASED ON ECONOMIC BENEFITS

By

Eng. Samar Gamal Abd El-Nasser

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE in Electrical Power and Machines Engineering

ENERGY HARVISTING MAXIMIZATION BY INTEGRATION OF DG BASED ON ECONOMIC BENEFITS

By **Eng. Samar Gamal Abd El-Nasser**

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in

Electrical Power and Machines Engineering Under the Supervision of

Prof.Dr. Essam El-Din Aboul Zahab Dr. Tarek Abdelbadea Boghdady

Professor
Electrical Power Engineering
Department Faculty of Engineering,
Cairo University

Assistant Professor
Electrical Power Engineering
Department Faculty of Engineering,
Cairo University

ENERGY HARVISTING MAXIMIZATION BY INTEGRATION OF DG BASED ON ECONOMIC BENEFITS

By **Eng. Samar Gamal Abd El-Nasser**

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

ir

Electrical Power and Machines Engineering

Approved by the Examining Committee

Prof. Dr. Essam El-Din Aboul Zahab Thesis Main Advisor

Prof. Dr. Ahmed Mohamed Ibrahim Internal Examiner

Prof. Dr. Said Abd El Monem Wahsh

Professor of electronics and control at the Electronic Research Institute

External Examiner

Engineer's Name: Samar Gamal Abd El-Nasser

Date of Birth: 10/3/1993 **Nationality:** Egyptian

E-mail: samar.gamal@iaet.edu.eg

Phone: 01157390873

Address: 14th AL-Naser street, Al-mariotaya fiasl,

Giza, Egypt.

Registration Date: 1/3/2017 **Awarding Date:**/2021 **Degree:** Master of Science

Department: Electrical Power and Machines Engineering

Supervisors: Prof. Dr. Essam El-Din Aboul Zahab

Dr. Tarek Abdelbadea Boghdady

Examiners: Prof. Dr. Essam El-Din Aboul Zahab (Thesis Main Advisor)

Prof. Dr. Ahmed Mohamed Ibrahim (Internal Examiner)
Prof. Dr. Said Abd El Monem Wahsh (External Examiner)

Professor of electronics and control at the Electronic Research Institute

Title of Thesis:

ENERGY HARVISTING MAXIMIZATION BY INTEGRATION OF DG BASED ON ECONOMIC BENEFITS

Key Words:

Distributed Generation, Genetic Algorithm, Grey Wolf Optimizer, Particle Swarm Optimization, Whale Optimization Algorithm.

Summary:

In this thesis, the purpose of Distributed Generation systems (DGs) is to enhance the Distribution System (DS) performance to be better known with its benefits in the power sector as installing Distributed Generation (DG) units into the DS can introduce finical and technical benefits. Those benefits can be obtained, if the DG units' site and size is properly determined. The aim of this thesis is studying and reviewing the effect of connecting DG units in the DS on Transmission Efficiency (TE), reactive power loss and voltage deviation in addition to the economical point of view with considering the interest and inflation rate. Genetic Algorithm (GA) is introduced to find the best solution to the distributed generation penetration problem in the DS. The result of GA is compared with Whale Optimization Algorithm (WOA), Particle Swarm Optimization (PSO), and Grey Wolf Optimizer (GWO). The Proposed solutions methodologies have been tested using MATLAB software on IEEE 33 standard bus system.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Samar Gamal Abd El-Nasser	Date:
Signature:	

Acknowledgments

First of all, I give thanks to **ALLAH** for giving me strength and blessing to complete this thesis. I would like to thank my thesis main advisor **Prof. Dr. Essam El-Din Aboul Zahab** for his efforts, continuous encouragement and good treatment. He was really a supreme example in science and respect. Many thanks to my thesis advisor **Dr.Tarek El Boghdady**. He served as my elder brother in support and encouragement.

I would also like to thank **my parents, my husband, and my sisters** for providing me with unfailing support and continuous encouragement throughout my years of study and through the process of researching and writing this thesis.

I would also like to thank whoever helped me through the process of researching and writing this thesis and whoever this accomplishment would not have been possible without them. Thank you.

Table of Contents

Disclaimer	i ii
Table of Contents	iii
List of Tables.	vi
List of Figures.	vii
List of Abbreviations.	vii i
List of Symbols.	X
Abstract	xii
CHAPTER 1: INTRODUCTION.	1
1.1 Distributed Generation (DG)	1
1.2 Impact of Distributed Generation on Transmission Efficiency	1
1.3Thesis Objectives.	1
1.4 Motivation	1
1.5 Organization of the Thesis	2
CHAPTER 2: LITERATURE REVIEW	3
2.1 Definition of Distributed Generation	3
2.2 DG Benefits	4
2.2.1 Enhancing the Transmission efficiency (Power Loss Reduction)	4
2.2.2 Improving Voltage Profile	4
2.2.3 High Performance and Safety of the Environment	5
2.2.4 Improvement of System Reliability	5
2.2.5 DG can be Used As a Black Starter Power Supply	6
2.2.6 In Remote Areas, The Load Power Demand can Be Achieved	6
2.2.7 Reducing the Transmission and Distribution Costs	6
2.3 Technologies of Distributed Generation	7
2.3.1 Wind Turbines	7
2.3.2 Fuel Cells.	9
2.3.3 Internal Combustion Engine Reciprocating (ICE)	10
2.3.4 Photovoltaic	10

2.3.5 Micro-Turbines.	10
2.3.6 Storage Devices.	10
2.4 Interfacing of DG with Grid	11
2.5 DG units Impacts on Power System	12
2.5.1 Power Flow	12
2.5.2 Power Quality.	13
2.5.3 Network fault levels.	13
2.5.4 Protection (Coordination Problem)	14
2.6 DG's Rules	15
2.7 A selection of Objectives for Optimum DGA	17
2.7.1 Total Power Loss Minimization	18
2.7.2 Voltage Profile Enhancement	18
2.7.3 Objectives of Financial Considerations.	18
2.7.3.1 Maximization of DG Efficiency and Energy Harvest	18
2.7.3.2 Minimization of Costs and Maximization of Benefit	18
2.7.4 Multi-Objective Index(MOI)	19
2.8 Constraints for Optimum DGA	19
2.9 Optimization Methods and Algorithms	20
2.9.1 Classic Algorithms	21
2.9.2 Physic or Society Inspired Algorithms.	21
2.9.3 Nature-Inspired Techniques.	21
2.10 Summary of This Chapter	21
CHAPTER 3: PROBLEM FORMULATION	23
3.1 Power Flow Technique.	23
3.2 Transmission Efficiency (TE) Estimation in case of Existing DGs	26
3.3 Index of TE	26
3.4 DGs Cost Evaluation	26
3.4.1 Cost of Investment.	26
3.4.2 Cost of Operation.	27
3.4.3 Maintenance Cost.	27
3.5 DGs Benefits Evaluation	27
3.5.1 Real Power Demand Reduction from DS Network	27

3.5.2 Loss Reduction Revenue	28
3.6 Objective Function.	28
3.6.1 Reactive Power loss(QLI) and Transmission Efficiency Indices (TEI)	28
3.6.2 Voltage Deviation Index (VDI)	29
3.6.3 Minimizing Total Cost	29
3.7 Summary of This Chapter	30
CHAPTER 4: APPLICATIONS AND RESULTS	31
4.1 The Bus System IEEE 33	31
•	32
•	32
	32
	33
4.3.3 Optimum allocation of DGs	33
4.4 Using the Single Objective Index of Transmission Efficiency	33
4.4.1 Optimum Size of DGs	33
4.4.2 Optimum Site of DGs	36
4.4.3 Optimum Allocation of DGs	38
4.4.4 Optimum Allocation of DGs and minimization Total Cost as SOI	41
4.5 Optimum Allocation of DGs and Minimization Reactive Power Loss (Qloss), Voltage Deviation (VD), and Maximization of TE as MOI	44
4.5.1 Case Study	44
4.5.2 Changing the Weight Factors by Parito Method to Achieve The Best MOI	47
4.6 Summary of This Chapter	56
CHAPTER 5: CONCLUSIONS AND FUTURE WORK	57
5.1 Summary	57
5.2 Conclusions.	57
5.3 Future work	58
REFERENCES	5
Appendix A	63
Appendix B	64

List of Tables

Table 2.1: The Rules that follow for DGs	16
Table 4.1: Optimum size of DGs for transmission efficiency minimization	35
Table 4.2: Optimum site of DGs for transmission efficiency minimization	36
Table 4.3: Optimum allocation of DGs for transmission efficiency minimization	39
Table 4.4 Optimum allocation of DGs for minimizing total cost as SOI	42
Table 4.5: Optimum allocation of DGs for minimizing MOI	46
Table 4.6: Optimum allocation of DGs for minimizing MOI taking into consideration voltage profile	49
Table 4.7: Optimum allocation of DGs for minimizing MOI taking into consideration transmission efficiency minimization	52
Table 4.8: Optimum allocation of DGs for minimizing MOI taking into consideration reactive power loss minimization	55

List of Figures

Fig.2.1: Voltage profile improvement	5
Fig.2.2: Distributed Generation technologies	7
Fig.2.3: Wind turbine forms	8
Fig.2.4: Wind turbine	8
Fig.2.5: micro-turbines	1
Fig.2.6: power flow	1
Fig.2.7: power quality	1
Fig.2.8: Simple network presenting the network impedances during a fault in the presence of DG	1
Fig.2.9: Coordination Problem	1
Fig.2.10: Islanding Problem.	1
Fig.2.11: Steps to determine the optimum allocation of DGs	1
Fig.2.12: Selected objectives in distributed generation allocation	1
Fig.2.13: Considered constraints in distributed generation allocation	2
Fig.3.1: A section of Distribution System (DS)	2
Fig.4.1: Single line diagram of standard IEEE 33 bus DS	3
Fig.4.2: Magnitude of the node voltage of base case of 33-bus test DS	3
Fig.4.3: Magnitude of the node voltage of optimum size of DGs	3
Fig.4.4: Transmission efficiency of optimum size of DGs	3
Fig.4.5: Magnitude of the node voltage of optimum site of DGs	3
Fig.4.6: Transmission efficiency of optimum site of DGs	3
Fig.4.7: Magnitude of the node voltage of optimum allocation of DGs	4
Fig.4.8: Transmission efficiency of optimum allocation of DGs	4
Fig.4.9: Magnitude of the node voltage of optimum allocation of DGs for minimizing total cost by GA	4
Fig.4.10: Transmission efficiency of optimum allocation of DGs for minimizing total cost	۷
Fig.4.11: Magnitude of the node voltage of optimum placement and size of DGs for minimizing total cost by GWO	4

Fig.4.12: Magnitude of the node voltage of optimum allocation of DGs for minimizing MOI	44
Fig.4.13: Transmission efficiency of optimum allocation of DGs for minimizing MOI.	45
Fig.4.14: Reactive Power Loss of optimum allocation of DGs for minimizing MOI	45
Fig.4.15: Magnitude of the node voltage of optimum allocation of DGs for minimizing MOI taking into consideration voltage profile	47
Fig.4.16: Transmission efficiency of optimum allocation of DGs for minimizing MOI taking into consideration voltage profile	47
Fig.4.17: Reactive power loss of optimum allocation of DGs for minimizing MOI taking into consideration voltage profile	48
Fig.4.18: Magnitude of the node voltage of optimum allocation of DGs for minimizing MOI taking into consideration maximizing transmission efficiency.	50
Fig.4.19: Transmission efficiency of optimum allocation of DGs for minimizing MOI taking into consideration maximizing transmission efficiency	50
Fig.4.20: Reactive Power loss of optimum allocation of DGs for minimizing MOI taking into consideration maximizing transmission efficiency	51
Fig.4.21: Magnitude of the node voltage of optimum allocation for minimizing MOI taking into consideration Reactive power	53
Fig.4.22: Transmission efficiency of optimum allocation for minimizing MOI taking into consideration Reactive power	53
Fig.4.23: Reactive power loss of optimum allocation for minimizing MOI taking into consideration Reactive power	54