

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

# بسم الله الرحمن الرحيم





HANAA ALY



شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله



شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم



HANAA ALY



شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

## جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات



يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار



HANAA ALY



# The Effect of Clover Honey Supplementation on the Anthropometric Measurements and Lipid Profile of Malnourished Infants and Children

Thesis

For partial fulfillment of Master degree in pediatrics

By

#### **Nagwa Ibrahim Mohamed Ibrahim**

Degree: M.B., B.Ch, Faculty of Medicine, Ain Shams University (2015)

Supervised by

#### Prof. Mamdouh Abdulmaksoud Abdulrhman

Professor of Pediatrics
Faculty of Medicine, Ain Shams University

#### Dr. Bassma Abdel Nasser Mohammed Abdel Haleem

Lecturer of Pediatrics
Faculty of Medicine, Ain Shams University

Faculty of Medicine Ain Shams University 2021





First, thanks are all due to Allah for Blessing this work until it has reached its end, as a part of his generous help throughout our life.

It is great honor to express my deepest gratitude and cordial appreciation to **Prof. Mamdouh Abdulmaksoud**Abdulrhman, Professor of Pediatrics, Faculty of Medicine, Ain Shams University, for his meticulous supervision, constant guidance and encouragement.

I also thank **Dr. Bassma Abdel Nasser Mohammed Abdel Halim, Lecturer of Pediatrics, Faculty of Medicine, Ain Shams University,** for her valuable suggestions and encouragement.

None of my work would have been possible without the constant support of **My Family**. Last but not least, I want to express my deepest gratitude for **My Father** and my mother who enlightened all aspects of my life.

Nagwa Ibrahim

## List of Contents

| Title                    | Page No. |
|--------------------------|----------|
| List of Abbreviations    | i        |
| List of Tables           | iii      |
| List of Figures          | v        |
| Introduction             | 1        |
| Aim of the Study         | 2        |
| Review of Literature     |          |
| Malnutrition in Children | 3        |
| Dyslipidemia             | 24       |
| Honey                    | 39       |
| Subjects and Methods     |          |
| Results                  |          |
| Discussion               |          |
| Summary                  |          |
| Conclusion               |          |
| Recommendations          |          |
| References               |          |
| Arabic Summary           |          |

#### List of Abbreviations

| Abb.        | Full term                                |
|-------------|------------------------------------------|
| APO B100    | · Apolipoprotein B100                    |
|             | • Atherosclerotic cardiovascular disease |
|             | . Body mass index                        |
|             | Coronary artery disease                  |
|             | · Cluster of differentiation             |
| <b>CETP</b> | . Cholesterol ester transfer protein     |
|             | · Cardiovascular disease                 |
| DALYS       | Disability adjusted life years           |
| DHS         | • Demographic health survey              |
| FCS         | • Familial chylomicronemia syndrome      |
| FH          | . Familial hypercholesterolemia          |
| <b>GERD</b> | . Gastroesophageal reflux disease        |
| <b>GH</b>   | . Growth hormone                         |
| <b>GI</b>   | . Gastrointestinal                       |
| HDL         | . High-density lipoproteins              |
| HFA         | . Height for age                         |
| HMG-CoA     | . 3-hydroxy-3-methylglutaryl co enzyme A |
| IGF-1       | Insulin-like growth factor-1             |
| IUGR        | . Intrauterine growth retardation        |
| LCAT        | Lecithin cholesterol acyltransferase     |
| LDL         | Low-density lipoproteins                 |
| LDLR        | . LDL-receptor-                          |
| LPL         | Lipoprotein lipase                       |
| MAM         | • Moderate acute malnutrition            |
|             | Myocardial infarction                    |
| MUAC        | Mid-upper-arm circumference              |

#### List of Abbreviations Cont...

| Abb. | Full term                       |
|------|---------------------------------|
| ORS  | • Oral rehydration solution     |
|      | Protein-energy malnutrition     |
| RUSF | Ready-to-use supplemental food  |
| RUTF | Ready- to-use therapeutic foods |
| SAM  | Severe acute malnutrition       |
| T3   | • Tri-iodothyroxine             |
| TC   | • Total cholesterol             |
| TG   | • Triglycerides                 |
| VLDL | • Very low-density lipoprotein  |
| WFA  | . Weight for age                |
| WFH  | . Weight for height             |

## List of Tables

| Table No.                | Title                                                                                                                        | Page No.             |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Table (1):<br>Table (2): | Physical examination in child malnu Acceptable, borderline-high, and high lipid and lipoprotein ranges for child adolescents | h plasma<br>dren and |
| <b>Table (3):</b>        | Sociodemographic characters or the groups                                                                                    |                      |
| <b>Table (4):</b>        | Anthropometric measurements of the groups                                                                                    |                      |
| <b>Table (5):</b>        | Lipid profile of the studied gr<br>baseline:                                                                                 | <del>-</del>         |
| <b>Table (6):</b>        | Anthropometric measurements of the groups, after 3 months of the beginning                                                   | e study              |
| <b>Table (7):</b>        | Lipid profile of the studied groups months honey intervention                                                                |                      |
| <b>Table (8):</b>        | Anthropometric measurement of supplementation group at baseline a 3 months honey intervention                                | and after            |
| <b>Table (9):</b>        | Lipid profile of honey supplementati at baseline and after 3 month intervention.                                             | s honey              |
| <b>Table (10):</b>       | Anthropometric measurements of N supplementation group at baseline a 3 months of study beginning                             | and after            |
| <b>Table</b> (11):       | Lipid profile of No honey supplem group at baseline and after 3 months beginning                                             | s of study           |

## List of Tables Cont...

| Table No.   | Title                                                                                                                  | Page No.              |
|-------------|------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Table (12): | Comparison between the study gregarding the difference in anthromeasurements at baseline and months honey intervention | opometric<br>after 3  |
| Table (13): | Comparison between the study gregarding the difference in lipid baseline and after 3 month intervention.               | profile at<br>s honey |

#### List of Figures

| Fig. No.            | Title                                                                                       | Page No.          |
|---------------------|---------------------------------------------------------------------------------------------|-------------------|
| Figure (1):         | World Health Organization's Plan for the Management of Sever Malnutrition                   | e Acute           |
| Figure (2):         | Various types of biological activ                                                           |                   |
| Figure (3):         | Age in the studied groups                                                                   | 56                |
| Figure (4):         | Sex of the studied groups                                                                   | 56                |
| Figure (5):         | Anthropometric measurements studied groups                                                  |                   |
| Figure (6):         | Head circumference and mid arm studied groups                                               |                   |
| Figure (7):         | Baseline lipid profile of the groups.                                                       |                   |
| Figure (8):         | Anthropometric measurements studied groups after 3 months of intervention.                  | f honey           |
| Figure (9):         | Head circumference and mic circumference of the studied group 3 months honey intervention   | l arm<br>ps after |
| <b>Figure (10):</b> | Lipid profile of the studied groups, months of the study beginning                          | after 3           |
| Figure (11):        | Weight of honey supplementation at baseline and after 3 months intervention                 | honey             |
| <b>Figure (12):</b> | Height of honey supplementation at baseline and after 3 months intervention                 | honey             |
| Figure (13):        | Body mass index of<br>supplementation group at baseli<br>after 3 months honey intervention. | ne and            |

## List of Figures Cont...

| Fig. No.     | Title                                                                                                                            | Page No.                               |
|--------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| Figure (14): | Lipid profile of honey supplement group at baseline and after 3 m honey intervention                                             | $\operatorname{nonths}$                |
| Figure (15): | Weight of No honey supplement group at baseline and after 3 more study beginning                                                 | nths of                                |
| Figure (16): | Height of No honey supplement group at baseline and after 3 more study beginning.                                                | nths of                                |
| Figure (17): | Lipid profile of No honey supplement group at baseline and after 3 more study beginning.                                         | nths of                                |
| Figure (18): | Comparison between honey supplementation as regarding the difference in weight baseline and after 3 months intervention.         | n group<br>nt from<br>honey            |
| Figure (19): | Comparison between honey supplementation as regarding the difference in her baseline and after 3 months intervention.            | ntation<br>n group<br>ight at<br>honey |
| Figure (20): | Comparison between honey supplementation as regarding the difference in body index from baseline and after 3 honey intervention. | n group<br>y mass<br>months            |

## List of Figures Cont...

| Fig. No.     | Title                                                                                                                               | Page No.                            |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| Figure (21): | Comparison between honey supplementation as regarding the difference in serum I baseline and after 3 months intervention.           | n group<br>HDL at<br>honey          |
| Figure (22): | Comparison between honey supplementation as regarding the difference in serum baseline and after 3 months intervention.             | ntation<br>group<br>LDL at<br>honey |
| Figure (23): | Comparison between honey supplementation as regarding the difference in cholesterol at baseline and after 3 in honey intervention.  | ntation<br>group<br>serum<br>months |
| Figure (24): | Comparison between honey supplementation as regarding the difference in triglyceride at baseline and after 3 in honey intervention. | n group<br>serum<br>months          |

#### Introduction

Severe acute malnutrition (SAM) remains a substantial global health problem. Each year, SAM affects more than 18 million children, most living in low income settings. SAM contributes to 45% of all deaths in children less than 5 years of age world wide (*Black et al.*, 2013).

Studies have found that intrauterine and/or early life malnutrition may predispose the fetus and infants to metabolic disorders including dyslipidemia (*Lussana et al.*, 2008).

Since ancient times, honey has been used as a medicinal food. Honey was mentioned in several religious books, mainly in **Quran** (*Purbafrani et al.*, 2014; Saxena et al., 2010).

Honey is a natural sweetener, containing mainly monosaccharaides (up to 80%), disaccharides (3–5%), water (17–20%) and a wide range of minor constituents such as vitamins, minerals, proteins, amino acids, enzymes and phytochemicals, mainly phenolic acids and flavonoids (*Escuredo et al.*, 2014).

Honey has been shown to improve lipid profile, particularly cholesterol level in obese children. The exact mechanism of honey in the improvement of this risk factor has not been clearly determined. However, phenolic compounds present in honey are reportedly associated with improvement of coronary vasodilation, prevention of blood clots and protection of LDL-cholesterol from oxidation (*Nguyen et al.*, *2019*).