

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

كليه العلوم - قسم الكيمياء

Synthesis, Characterization and Microbiological Studies of Metal Ion Complexes and Nano Coordinated Complexes of Acyclovir Ligand and Schiff Base Ligands Derived from Valacyclovir

Thesis submitted of the requirement of Ph. D. Degree of Science in Chemistry

Presented by Khadija Milad Ennaas Nassir

M.Sc. (2007)

Chemistry Department, Faculty of Science, Sebha University

Supervised by Prof. Dr. Fatma Mohamed Elzawawi

(Prof. of Inorganic and Analytical Chemistry Faculty of Science, Ain Shams University)

Prof. Dr. Ayman Ahmed Abdel Aziz

(Prof. of Inorganic Chemistry, Faculty of science, Ain Shams University)

Prof. Dr. Samy Mohamed Abu-El-Wafa

(Prof. of Inorganic Chemistry Faculty of Education, Ain Shams University)

Dr. Mosad Abdelrahman El-ghamry

(Lecturer of Inorganic Chemistry Faculty of Education, Ain Shams University)

Department of Chemistry
Faculty of Science, Ain Shams University
2021

كليه العلوم - قسم الكيمياء

Synthesis, Characterization and Microbiological Studies of Metal Ion Complexes and Nano Coordinated Complexes of Acyclovir Ligand and Schiff Base Ligands Derived from Valacyclovir

Thesis Advisors

Thesis Approval

Prof. Dr. Fatma Mohamed Elzawawi

(Prof. of Inorganic and Analytical Chemistry Faculty of Science, Ain Shams University)

Prof. Dr. Ayman Ahmed Abdel Aziz

(Prof. of Inorganic Chemistry, Faculty of Science, Ain Shams University)

Prof. Dr. Samy Mohamed Abu-El-Wafa

(Prof. of Inorganic Chemistry Faculty of Education, Ain Shams University)

Dr. Mosad Abdelrahman El-ghamry

(Lecturer of Inorganic Chemistry Faculty of Education, Ain Shams University

Head of Chemistry Department Prof. Dr. Ayman Ayoub Abdel-Shafi

كليه العلوم - قسم الكيمياء

Synthesis, Characterization and Microbiological Studies of Metal Ion Complexes and Nano Coordinated Complexes of Acyclovir Ligand and Schiff Base Ligands Derived from Valacyclovir

Thesis submitted in partial fulfilment of the requirement of Ph. D. Degree of Science in Chemistry

Presented by Khadija Milad Ennaas Nassir

M.Sc. (Chemistry) 2007

To
Chemistry Department
Faculty of Science
Ain Shams University

بيتم التر التحمي

﴿ وَقُل رَّبِّ زِوْنِي عِلْما ﴾

ريله اصلاق العظنيم

سورة طه (آية ١١٤)

Acknowledgement

First of all, thanks to God for helping me to accomplish this thesis.

I would like to express my sincere gratitude and indebtedness to my supervisors: **Prof. Dr. Samy M. Abu-El-Wafa** (Professor of Inorganic Chemistry, Faculty of Education, Ain Shams University) and **Dr. Mosad A. El-ghamry** (Lecturer of Inorganic Chemistry, Faculty of Education, Ain Shams University) for suggesting the point of research and for their valuable help, suggestions, guidance, support and offering me the opportunity to carry out this interesting research work under their kind supervision, also, I am truly thanks to **Prof. Dr. Fatma M. Elzawawi** (Prof. of Inorganic and Analytical Chemistry, Faculty of Science, Ain Shams University) and **Prof. Dr. Ayman A. Abdel Aziz** (Prof. of Inorganic Chemistry, Faculty of Science, Ain Shams University) for their valuable help, suggestions, guidance, support and offering me the opportunity to carry out this interesting research work under their kind supervision.

I am truly thankful to **Prof. Dr. Ayman Ayoub Abdel-Shafi**, Head of Chemistry Department for his great kind facilities, help and encouragement.

Grateful appreciation is extended to all members of the Chemistry Department, Faculty of Science, Ain Shams University for their help and continuous encouragement.

I would like to express of gratitude to **Dr. Dalal Z. Husein** (Assistant Prof. of Inorganic Chemistry, Faculty of Science, New Valley University) for her help in the investigation of the thesis.

Finally, I would like to express thanks to my husband for supporting and encouraging me. I do not forget to thank my father, mother, brothers and children, for they are the source of strength, support and inspiration.

Khadija Milad Ennaas Nassir

Contents

Title	Page		
List of figures	vi		
List of tables	xii		
List of schemes	xvi		
Abstract	xvii		
Aim of the work	xviii		
Chapter I			
Introduction			
1.1. Coordination ability and biological efficiency of the metal	1		
complexes of acyclovir			
1.2. Coordination ability and biological efficiency of the metal	15		
complexes of valacyclovir			
1.3. Coordination ability and biological efficiency of the metal	17		
complexes of Schiff bases			
1.4. Coordination chemistry and biological efficiency of nano	24		
complexes			
Chapter II			
Experimental			
2.1. Materials	39		
2.2. The organic ligands	39		
2.2.1. Acyclovir (ACV), AHEMP (HL ¹)			
2.2.2. Synthesis of the Schiff base ligands derived from			
valacyclovir HNAPB (H_2L^2) and DBAPB (H_3L^3)			
2.3. Synthesis of the metal complexes	41		
2.4. Synthesis of nano complexes	41		
2.4.1. Preparation of plant leaves extracts	41		
2.4.2. Chemical and green synthesis of nano complexes	41		
2.5. Preparation of solutions of the organic ligands and their	41		
complexes for electronic spectra and molar conductance			
2.6. Quantitative analysis of metal cations	42		
2.7. Physical measurements	43		
2.7.1. Melting points	43		
2.7.2. Elemental analyses	43		
2.7.3. Molar conductance measurements	43		
2.7.4. FT-IR spectra	43		
2.7.5. ¹ H-NMR spectra	43		

i

Title	Page		
2.7.6. Electronic spectra	43		
2.7.7. Magnetic measurements	43		
2.7.8. ESR spectra	44		
2.7.9. Mass spectra	44		
2.7.10. Thermogravimetric analysis (TGA)	44		
2.7.11. Transmission electron microscopy (TEM)	44		
2.7.12. X-Ray Diffraction (XRD)	44		
2.7.13. Electrical conductivity studies	45		
2.8. Theoretical studies	45		
2.8.1. Molecular modeling study	45		
2.8.2. Molecular docking study	45		
2.9. Biological activity studies	45		
2.9.1. Antimicrobial activity	45		
2.9.2. Antitumor activity	46		
2.9.3. DNA cleavage	46		
Chapter III			
Results and Discussion			
3.1. Investigation of the organic ligands	474		
3.1.1. IR spectra	47		
3.1.2. Electronic spectra			
3.1.3. ¹ H-NMR spectra			
3.1.4. Mass spectra			
3.1.5. Molecular modeling	50		
3.2. Characterization of the metal complexes	62		
3.2.1. Elemental analysis and molar conductance	62		
3.2.1.1. Elemental analysis and molar conductance of metal complexes of the ligand AHEMP (HL¹)	62		
3.2.1.2. Elemental analysis and molar conductance of metal complexes of the ligand HNAPB (H_2L^2)	63		
3.2.1.3. Elemental analysis and molar conductance of metal	63		
complexes of the ligand DBAPB (H ₃ L ³)			
3.2.2. IR spectra	67		
3.2.2.1. IR spectra of metal complexes of the ligand AHEMP (HL ¹)	67		
3.2.2.2. IR spectra of metal complexes of the ligand HNAPB (H_2L^2)	68		
3.2.2.3. IR spectra of metal complexes of the ligand DBAPB (H_3L^3)	68		