

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

كلية العلوم - قسم الكيمياء

Highly fluorescent push-pull (D- π -A) systems for luminescent solar concentrators

A Thesis

Submitted for the Degree of Master of Science
As Partial Fulfillment for Requirements of Master of Science
"Chemistry Department"

By

Hussein Abdullah Zaky Sabek

B.Sc. in Special Chemistry, Faculty of Science, Ain Shams University

2016

Under Supervision of

Prof. Dr. Ayman Ayoub Abdel-Shafi

Professor of Inorganic and photochemistry, Faculty of Science,

Ain Shams University

Dr. Hesham Samir Abdel-Samad

Associate professor of Physical Chemistry, Faculty of Science,

Ain Shams University

Dr. Dina Salah Eldin Mohamed Abdelrahman

Lecturer of Biophysics, Department of Physics, Faculty of Science,
Ain Shams University

كلية العلوم - قسم الكيمياء

Approval Sheet

Highly fluorescent push-pull (D- π -A) systems for luminescent solar concentrators

By

Hussein Abdullah Zaky Sabek

B.Sc. in Special Chemistry, Faculty of Science, Ain Shams University

2016

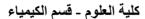
This Thesis for Master Degree has been approved by:

Prof. Dr. Ayman Ayoub Abdel-Shafi

Professor of Inorganic and photochemistry, Faculty of Science, Ain Shams University

Dr. Hesham Samir Abdel-Samad

Associate professor of Physical Chemistry, Faculty of Science, Ain Shams University.


Dr. Dina Salah Eldin Mohamed Abdelrahman

Lecturer of Biophysics, Faculty of Science, Ain Shams University.

Head of Chemistry Department

Prof. Dr. Ayman Ayoub Abdel-Shafi

Student Name: Hussein Abdullah Zaky Sabek

Scientific Degree: M.Sc.

Faculty Name: Faculty of Science, Ain Shams University,

Chemistry Department

Graduation Year: 2016

Granting Year: 2021

Acknowledgment

All the praises and thanks be to Allah, who has guided me to this, and never could I have found guidance, were it not that Allah had guided me.

First and foremost, I am extremely grateful to my supervisors, Prof. Dr. Ayman A. Abdel-Shafi without your help and wise guidance and giving me the chance to be your student this work would have not been the same! And Dr. Hesham S. Abdel-Samad for their invaluable advice, continuous support, and patience during my M.Sc. study. Their immense knowledge and plentiful experience have encouraged me in all the time of my academic research and daily life. I would also like to thank Dr. Ahmed M. Azaly and Dr. Dina Salah for their technical support on my study. I would like to thank all the members in the inorganic and photochemistry department. It is their kind help and support that have made my study and life a wonderful time.

Finally, I would like to express my gratitude to my Family, my wife, my children and my friends and I especially mentioned Ch. Fathy Abdelwahab. Without their tremendous understanding and encouragement in the past few years, it would be impossible for me to complete my study.

Hussein Abdullah

Contents

L	ist of F	igures	i
L	ist of T	ables	i
L	ist of S	ymbols	ii
L	ist of A	bbreviations	i
A	im of V	Vork	i
Sı	ummar	·y	i
C	hapter	I	1
	1.1	Introduction and Overview	1
	1.2	Abdel-Shafi and his co-workers	14
C	hapter	II	16
2	Materi	ials and Methods	16
	2.1	Materials	16
	2.2	UV-visible spectroscopy	16
	2.3	Photoluminescence	16
	2.3.1	Fluorescence Quantum Yield	16
	2.4	Photoluminescence Lifetime	17
	2.4.1	Time Resolved Fluorescence Lifetime Measurements	17
C	hapter	III	21

3	Results	and discussion2	1
	3.1	Steady-State Measurement	21
	3.2	Fluorescence lifetimes Decay:	98
	3.3	Solvent Polarity parameters:	31
	3.3.1	Bilot and Kawski: 13	32
	3.3.2	Reichardt and Ravi et al.: 13	36
	3.3.3	Kamlet and Taft Model:	39
	3.3.4	Catalán Model:	1 5
	3.3.5	Laurence et al Model:	53
Chapter IV 162			51
4	Conclusions161		
C	Chapter V163		
5	References163		

List of Figures

Figure 1.1	:	2-fluoro-4-(5-(4-methoxyphenyl)thiophen-2-	
	,	yl) benzonitrile (MOT)	15
Figure 1.2	:	4-(5-(4-(dimethylamino)phenyl)thiophen-2-yl)-2-	
		fluorobenzonitrile (DMAT)	15
Figure	:	normalized structureless absorption spectra of 2-	
Figure	-	fluoro-4-(5-(4-methoxyphenyl) thiophen-2-	24
3.1.1 -	,	yl)benzonitrile (MOT) in different solvents separated	To
3.1.16		per each solvent	39
Figure 3.1	:	normalized structureless absorption spectra of 2-	
	-	fluoro-4-(5-(4-methoxyphenyl) thiophen-2-	
	,	yl)benzonitrile (MOT) in different solvents	40
Figure	:	normalized structureless absorption spectra of 4-(5-	
3.2.1 -		(4-(dimethylamino)phenyl)thiophen-2-yl)-2-	41
3.2.16	-	fluorobenzonitrile (DMAT) in different solvents	To
3.2.10	:	separated per each solvent	56
Figure 3.2	:	normalized structureless absorption spectra of 4-(5-	
		(4-(dimethylamino)phenyl)thiophen-2-yl)-2-	
	-	fluorobenzonitrile (DMAT) in different solvents	5 <u>7</u>
Figure	:	normalized fluorescence emission spectra of MOT in	60
3.3.1 -	;	a wide range of solvents separated per each	To
3.3.16	:	solvent	75
Figure 3.3	:	normalized fluorescence emission spectra of MOT in	
	;	a wide range of solvents	76
Figure	:	normalized fluorescence emission spectra of DMAT	77
3.4.1 -	İ	in a wide range of solvents separated per each	To

3.4.16	solvent	92
Figure 3.4	: normalized fluorescence emission spectra of DMAT in a wide range of solvents	93
Figure 3.5	: shows that the Dependence of the fluorescence quantum yields, $\Phi_{\rm f}$, the fluorescence decay lifetime, τ , radiative rate constant, $k_{\rm r}$, and the nonradiative rate constant, $k_{\rm nr}$, for MOT and DMAT on the corre-	
	sponding emission energy, ν_{em}	94
Figure 3.6	: shows the excitation of DMAT at two different emission wavelengths and emission at two different excitation wavelengths in neutral aqueous	
	solution	95
Figure 3.7	: Show the fluorescence life time decay of 2-fluoro-4- (5-(4-methoxyphenyl) thiophen-2-yl) benzonitrile (MOT) in a wide range of solvents	114
Figure	: Show the fluorescence life time decay of 2-fluoro-4-	99
3.7.1 -	(5-(4-methoxyphenyl) thiophen-2-yl) benzonitrile	
3.7.15	(MOT) in a wide range of solvents separated per each solvent	to 113
Figure 3.8	: Show the fluorescence life time decay of DMAT in a wide range of sovents	131
Figure	: Show the fluorescence life time decay of DMAT in a	115
3.8.1 -	wide range of solvents separated per each solvent	to
3.8.16		130
Figure 3.9	: Plot of the Stokes shift, Δv , versus the solvent polarity function, $f(\epsilon, n)$, according to Eq. 3 for DMAT and MOT, respectively	134

Figure 3.10	: Plot of the Stokes shift, $\Delta \nu$, versus the solvent	
	polarity function, f (ϵ , n), according to Eq. 4 for	
	DMAT and MOT, respectively	135
Figure 3.11	: Shows two groups of plots for each compound de-	
	pending to the hydrogen bonding interaction prop-	
	erties of the solvents, namely protic and aprotic sol-	
	vents	136
Figure 3.12	: Represent the calculated values of the absorption	
	energy, \mathbf{v}_a according to Eq. 14 versus the corre-	
	sponding experimental values according to Kamlet–	
	Taft relationship	142
Figure 3.13	: Represent the calculated values of the emission en-	
	ergy, ν_e according to Eq. 14 versus the correspond-	
	ing experimental values according to Kamlet–Taft	
	relationship	143
Figure 3.14	: Represent the calculated values of the the Stokes	
	shift, according to Eq. 14 versus the corresponding	
	experimental values according to Kamlet–Taft rela-	
	tionship	144
Figure 3.15	: Represent the calculated values of the radiative rate	
	constant, $k_{\rm r}$, according to Eq. 14 versus the corre-	
	sponding experimental values according to Kamlet—	
	Taft relationship	145
Figure 3.16	: Represent the calculated values of the absorption	
	energy, \mathbf{v}_a versus the corresponding experimental	
	values according to Catalán relationship (insets	
	show the relative contribution)	150

Figure 3.17	:	Represent the calculated values of the emission en-	
		ergy, v_e versus the corresponding experimental val-	
		ues according to Catalán relationship (insets show	
		the relative contribution)	151
Figure 3.18	:	Represent the calculated values of the Stokes shift,	
		versus the corresponding experimental values ac-	
		cording to Catalán relationship (insets show the rel-	
		ative contribution)	152
Figure 3.19	:	Represent the calculated values of the radiative rate	
		constant, $k_{\rm r}$, versus the corresponding experimental	
		values according to Catalán relationship (insets	
		show the relative contribution)	153
Figure 3.20	:	Represent the calculated values of the absorption	
		energy, ν_{a} , versus the corresponding experimental	
		values according to Laurence relationship (insets	
		show the relative contribution of the regression co-	
		efficients)	158
Figure 3.21	:	Represent the calculated values of the emission en-	
		ergy, $\nu_{\it e}$, versus the corresponding experimental val-	
		ues according to Laurence relationship (insets show	
		the relative contribution of the regression coeffi-	
		cients)	159
Figure 3.22	:	Represent the calculated values of the Stokes shift,	
		versus the corresponding experimental values ac-	
		cording to Laurence relationship (insets show the	
		relative contribution of the regression coefficients)	
			160
Figure 3.23	:	Represent the calculated values of the radiative rate	161

constant, $k_{\rm r}$, versus the corresponding experimental
values according to Laurence relationship (insets
show the relative contribution of the regression co-
efficients)

List of Tables

Table 3.1	:	The wavelengths of maximum absorption of MOT	
		in different solvents and calculated fluorescence life-	
		time decay, quantum yield of fluorescence, radiative	
		and non-radiative rate constants	22
Table 3.2	:	The wavelengths of maximum absorption of	
		DMAT in different solvents and calculated fluores-	
		cence life-time decay, quantum yield of fluorescence,	
		radiative and non-radiative rate constants	23