

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

EVALUATION OF ADAPTIVE CONTROL TECHNIQUES IN POWER SYSTEM STABILIZATION

By

Mahmoud Abdallah Osman Ahmed Azouz

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
Master of Science
in
Electrical Power and Machines Engineering

EVALUATION OF ADAPTIVE CONTROL TECHNIQUES IN POWER SYSTEM STABILIZATION

By Mahmoud Abdallah Osman Ahmed Azouz

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
Master of Science
in
Electrical Power and Machines Engineering

Under the Supervision of

Prof. Dr. Abdel Latif Mohamed Elshafei

Professor of Automatic Control Systems
Electrical Power and Machines
Department
Faculty of Engineering, Cairo University

EVALUATION OF ADAPTIVE CONTROL TECHNIQUES IN POWER SYSTEM STABILIZATION

By **Mahmoud Abdallah Osman Ahmed Azouz**

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
Master of Science
in
Electrical Power and Machines Engineering

Approved by the Examining Committee

Prof. Dr. Abdel Latif Mohamed Elshafei (Thesis Main Advisor)

Prof. Dr. Khalid Ali Mohamed El Metwally (Internal Examiner)

Prof. Dr. Mahmoud Soliman Helal (External Examiner)

Professor of Power Systems, Banha University

Engineer's Name: Mahmoud Abdallah Osman Ahmed Azouz

Date of Birth: 19 / 10 / 1984 **Nationality:** Egyptian

E-mail: Azzouz.007@gmail.com

Phone: +2-01098607172

Address: Nasr City, Cairo, Egypt

Registration Date: 1/3/2018 **Awarding Date:** //2021 **Degree:** Master of Science

Department: Electrical Power and Machines Engineering

Supervisors:

Prof. Dr. Abdel Latif Mohamed Elshafei

Examiners:

Prof. Dr. Abdel Latif Mohamed Elshafei (Thesis Main Advisor) Prof. Dr. Khalid Ali Mohamed El Metwally (Internal Examiner) Prof. Dr. Mahmoud Soliman Helal (External Examiner)

Professor of Power Systems, Banha University

Title of Thesis:

EVALUATION OF ADAPTIVE CONTROL TECHNIQUES IN POWER SYSTEM STABILIZATION

Key Words:

 $Power\ System\ Stabilizer-Model\ reference\ adaptive\ control-Parameter\ estimation-Self\ tuning\ regulator-Adaptive\ control\ system$

Summary:

In this thesis, two adaptive control techniques are presented and their feasibilities in power system applications are investigated. Design of a novel fixed parameters Power system stabilizer (PSS), an online parameter estimator, and Model Reference Adaptive Control (MRAC) with Augmented error system are discussed in detail. A comparative study between the proposed adaptive PSSs and two widely used PSSs shows a competitive performance as well as improvements in many performance aspects obtained by the adaptive PSSs

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Mahmoud Abdallah Osman Ahmed Azouz Date: / / 2021

Signature:

Acknowledgments

I praise and thank almighty god for His greatness, graces and for giving me the strength and persistence to complete this thesis.

I'm deeply grateful to Prof. Abdel Latif Elshafei. His guidance, his advice, and his support greatly lightened the burden of work in this thesis.

Special thanks to my work manager Mr. Abdelhamid Mohamed for supporting me to maximize work-study balance by adopting flexible working hours plan. I'm also deeply grateful to my company (Schneider Electric) for granting me a MATLAB/SIMULINK software and licenses fully equipped with toolboxes that helped me in obtaining and achieving thesis objectives.

I would like to thank my parents who made sure that I received the best education possible. I would like to thank my brothers for their encouragement, especially Hisham for his sincere and persistent encouragement.

Last but not the least important, I owe a big thanks to my dear wife Sarah for her patient and support.

Table of Contents

Disclai	mer	i
Acknow	vledgments	ii
Table o	f Contents	iii
List of	Tables	v
List of	Figures	vi
List of	Abbreviations	xiii
List of	Symbols	xiv
Abstrac	rt	xvii
Chapter	r 1 : Introduction	1
1.1.	Motivation	1
1.2.	Background	2
1.2.1.	Power system stability	2
1.2.2.	Power system stabilizer (PSS)	3
1.2.3.	Model Reference Adaptive Control (MRAC)	4
1.2.4.	Self-Tuning Regulator (STR)	5
1.3.	Literature Survey	6
1.4.	Objective	9
1.5.	Outlines	9
Chapte	r 2 Primary Controller Design	10
2.1.	Introduction	10
2.2.	Model Description and Problem Formulation	10
2.3.	Design	11
2.4.	Simulation and results	17
2.4.1.	Controller validation based on linearized model	18
2.4.2.	Controller validation based on Nonlinear model	20
2.4.3.	Effect of changing Auxiliary signal generators poles	23
2.5.	Conclusion	25
Chapte	r 3 Evaluation of Adaptive Power System stabilizers	26
3.1.	Outline	26
3.2.	RLS with exponential forgetting factor	26
3.3.	Bierman U-D factorization	27
3.4.	Self-tuning PSS design	29

3.4.1.	Model and Regressor vector	30
3.4.2.	Estimator Design	31
3.4.3.	STPSS – Primary Controller	32
3.5.	STPSS – Simulations and results	32
3.5.1.	Applying Perturbation Signal to the input - Case (1)	33
3.5.2.	System response due to step change in mechanical torque	36
3.5.3.	System response due to a sudden change in operating point	53
3.6.	Derivation of adaptive law [71]	56
3.7.	MRAC Design	57
3.8.	MRAC PSS - Simulation and results	59
3.9.	Conclusion	69
Chapter	4 Damping Inter-Area Oscillations Using Adaptive Control	70
4.1.	Outlines:	70
4.2.	Introduction:	70
4.3.	System description	70
4.4.	Simulation and results	73
4.4.1.	Tuning	73
4.4.2.	Small-signal stability assessment	75
4.4.3.	Transient stability assessment	79
4.4.4.	Transient stability assessment – Washout filter-aided adaptive PSS	81
4.5.	Conclusion.	84
Chapter	5 Conclusion	85
Referen	ces:	88
APPENDIX A: SINGLE MACHINE INFINITE BUS NONLINEAR MODEL		94

List of Tables

Table 2-1 Power system frequency	11
Table 2-2 Plant parameters for different loads	
Table 3-1 Limits of estimated plant parameters	
Table 3-2 Case 2 and Case 3 Parameter estimates comparison	
Table 3-3 Case 2, 3, and 5 parameter estimates comparison	
Table 4-1 synchronous generator parameters	
Table 4-2 Steam turbine and governor parameters	
Table 4-3 MBPSS Tuning parameters	
Table 4-4 dPaPSS Tuning parameters	

List of Figures

Figure 1.1 Adaptive control system4
Figure 1.2 General MRAC structure
Figure 1.3 General STR structure
Figure 2.1 Small signal model of synchronous machine, line and infinite-bus11
Figure 2.2 Primary controller
Figure 2.3 ASG1 and its state feedback parameter vector cT
Figure 2.4 ASG2 and its state feedback parameter vector <i>DT</i> 14
Figure 2.5 Modified ASG2 and its state feedback vector <i>DT</i> 14
Figure 2.6 Response of the system due to 5% deviation at P=1, and Q=0.418
Figure 2.7 Response of the system due to 5% deviation at P=1, and Q=0.718
Figure 2.8 Response of the system due to 5% deviation at P=1, and Q= -0.419
Figure 2.9 Response of the system due to 5% deviation at P=1, and Q=0.419
Figure 2.10 Response of the system due to 5% deviation at $P=1$, and $Q=0.720$
Figure 2.11 Response of the system due to 5% deviation at $P=1$, and $Q=-0.420$
Figure 2.12 Response of the system due to 0.1 pu step change in Mechanical torque
at P=1, and Q=0.421
Figure 2.13 Response of the system due to $0.1~\mathrm{pu}$ step change in Mechanical torque
at P=1, and Q=0.721
Figure 2.14 Response of the system due to $0.1~\mathrm{pu}$ step change in Mechanical torque
at P=1, and Q=-0.422
Figure 2.15 Response of the system due to $0.1~\mathrm{pu}$ step change in Mechanical torque
at P=1, and Q=0.4
Figure 2.16 Response of the system due to 0.1 pu step change in Mechanical torque
at P=1, and Q=0.723
Figure 2.17 Response of the system due to 0.1 pu step change in Mechanical torque
at P=1, and Q=-0.423
Figure 2.18 Response of the system due to 5% deviation at P=1, and Q= 0.4 for
large and small time constant
Figure 2.19 Response of the system due to 5% deviation at P=1, and Q= 0.7 for
large and small time constant24

Figure 2.20 Response of the system due to 5% deviation at P=1, and Q= -0.4 for
large and small time constant
Figure 3.1 Self-Tuning PSS
Figure 3.2 Detailed Self-Tuning PSS
Figure 3.3 Perturbation signal (PS)
Figure 3.4 Regulated and unregulated plant output (Speed deviation) (left) and
STPSS Control signal (right) responses due to perturbation signal added to the
control signal when plant at operating point equal to [1, 0.4]34
Figure 3.5 Parameter estimates due to perturbation signal added to STPSS control
signal when plant at operating point equal to [1, 0.4]34
Figure 3.6 Regulated and unregulated plant output (Speed deviation) (left) and
STPSS Control signal (right) responses due to perturbation signal added to the
control signal when plant at operating point equal to [1, 0.7]35
Figure 3.7 Parameter estimates due to perturbation signal added to STPSS control
signal when plant at operating point equal to [1, 0.7]35
Figure 3.8 Regulated and unregulated plant output (Speed deviation) (left) and
STPSS Control signal (right) responses due to perturbation signal added to the
control signal when plant at operating point equal to [1, - 0.4]36
Figure 3.9 Parameter estimates due to perturbation signal added to STPSS control
signal when plant at operating point equal to [1, - 0.4]36
Figure 3.10 Regulated and unregulated plant output (Speed deviation) (left) and
STPSS Control signal (right) responses due to 0.1 pu step change in mechanical
torque when plant at operating point equal to [1, 0.4]37
Figure 3.11 Parameter estimates due to 0.1 pu step change in mechanical torque
when plant at operating point equal to [1, 0.4]37
Figure 3.12 Covariance matrix trace due to 0.1 pu step change in mechanical torque
when plant at operating point equal to [1,0.4]
Figure 3.13 Regulated and unregulated plant output (Speed deviation) (left) and
STPSS Control signal (right) responses due to 0.1 pu step change in mechanical
torque when plant at operating point equal to [1, - 0.7]
Figure 3.14 Parameter estimates due to 0.1 pu step change in mechanical torque
when plant at operating point equal to [1, 0.7]39
Figure 3.15 Covariance matrix trace due to 0.1 pu step change in mechanical torque
when plant at operating point equal to [1, 0.7]39

Figure 3.16 Regulated and unregulated plant output (Speed deviation) (left) and
STPSS Control signal (right) responses due to 0.1 pu step change in mechanical
torque when plant at operating point equal to [1, - 0.4]
Figure 3.17 Parameter estimates due to 0.1 pu step change in mechanical torque
when plant at operating point equal to [1, -0.4]40
Figure 3.18 Covariance matrix trace due to 0.1 pu step change in mechanical torque
when plant at operating point equal to [1, -0.4]41
Figure 3.19 Regulated and unregulated plant output (Speed deviation) (left) and
STPSS Control signal (right) responses due to 0.1 pu step change in mechanical
torque when plant at operating point equal to [1, 0.4]42
Figure 3.20 Parameter estimates due to 0.1 pu step change in mechanical torque
when plant at operating point equal to [1, 0.4]42
Figure 3.21 Covariance matrix trace due to 0.1 pu step change in mechanical torque
when plant at operating point equal to [1, 0.4]42
Figure 3.22 Regulated and unregulated plant output (Speed deviation) (left) and
STPSS Control signal (right) responses due to 0.1 pu step change in mechanical
torque when plant at operating point equal to [1, 0.7]43
Figure 3.23 Parameter estimates due to 0.1 pu step change in mechanical torque
when plant at operating point equal to [1, 0.7]
Figure 3.24 Covariance matrix trace due to 0.1 pu step change in mechanical torque
when plant at operating point equal to [1,0.7]44
Figure 3.25 Regulated and unregulated plant output (Speed deviation) (left) and
STPSS Control signal (right) responses due to 0.1 pu step change in mechanical
torque when plant at operating point equal to [1, - 0.4]
Figure 3.26 Parameter estimates due to 0.1 pu step change in mechanical torque
when plant at operating point equal to [1, -0.4]45
Figure 3.27 Covariance matrix trace due to 0.1 pu step change in mechanical torque
when plant at operating point equal to [1, -0.4]45
Figure 3.28 Regulated and unregulated plant output (Speed deviation) (left) and
STPSS Control signal (right) responses due to 0.1 pu step change in mechanical
torque when plant at operating point equal to [1, 0.4]47
Figure 3.29 Parameter estimates due to 0.1 pu step change in mechanical torque
when plant at operating point equal to [1, 0.4]