

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Estimation of Progression Free Survival (PFS) in patients with hormone positive metastatic breast cancer in cohort of Egyptian patients (Retrospective Cohort Study)

A Thesis

Submitted for Partial Fulfillment of Master Degree In Clinical Oncology & Nuclear Medicine

By

Ahmed Mohammed El-Saeed Abd El-Fattah M.B. B.Ch.

Under Supervision of

Prof. Ali Mohammed Azmy

Professor of Clinical Oncology and Nuclear Medicine Faculty of Medicine – Ain Shams University

Prof. Mohammed Sabry EL-Qady

Professor of Clinical Oncology and Nuclear Medicine Faculty of Medicine – Ain Shams University

Assist. Prof. Amr Shafik

Assistant Professor of Clinical Oncology and Nuclear Medicine Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University 2021

سورة البقرة الآية: ٣٢

Acknowledgments

First of all, thanks to Allah, Most Merciful and compassionate. Without the help of Allah, nothing could be done.

I would like to express my sincere gratitude and deep appreciation to **Prof. Ali Mohammed Azmy**, Professor of Clinical Oncology and Nuclear Medicine, Faculty of Medicine Ain Shams University, for his continuous scientific guidance. Words cannot adequately express my great thanks and gratitude to him. I really have the honor to complete this work under his supervision.

I would like to express my sincere gratitude to **Dr. Mohammed Sabry El-Qady**, Professor of Clinical Oncology and Nuclear Medicine, Faculty of Medicine Ain Shams, for his valuable help, cooperation, and encouragement without which this work wouldn't be completed.

I would like to express my great thanks to Assist. Prof. Dr. Amr Shafik, Assistant Professor of Clinical Oncology and Nuclear Medicine, Faculty of Medicine Ain Shams, for his valuable help, cooperation, and encouragement without which this work wouldn't be completed.

I can't forget to thank with all appreciation all members of my Family, specially my dear Mother and commemorating the death of my dear Father, who his memory will be with me always, I will be grateful for their support and their great role in my life and numerous sacrifices for me and for my sisters; may Allah bless his soul.

Last but not least, many thanks for my Sisters and my Wife for their support.

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	iii
List of Figures	iv
Introduction	1
Aim of the Work	2
Review of Literature	
Epidemiology and Risk Factors	3
Breast cancer Biomarkers	12
Management of Metastatic Breast Cancer	38
Patients and Methods	57
Results	62
Discussion	87
Summary and conclusion	94
References	97
Arabic Summary	

List of Abbreviations

466r. Full-term Aromatasei inhibitor ΑT AR Androgen receptor ASCO American Society of Clinical Oncology BCI Breast cancer index : Basal-like 1 BL1 : Basal-like 2 BL2 RLIA : Basal like immune activated BLIS : Basal-like immunosuppressed **CDC** : Centers for Disease Control and Prevention DCIS : Ductal carcinoma in situ : Disease-free survival DFS dMFS : Distant metastasis-free survival ER : Estrogen Receptor : Gene expression profiling GEP GGI : Genomic Grade Index : Glucocorticoid receptor GR HER2 Human epidermal growth factor receptor 2 HR Hormone receptor IBC Invasive breast cancer \mathbf{IM} Immunomodulatory LAR Luminal androgen receptor : Lobular carcinoma in situ LCIS Mitogen activated protein kinase MAPK

MBC : Metastatic breast cancerMC : Molecular classification

MES : Mesenchymal

MSL: Mesenchymal stem-like

OS : Overall survival

PAM50 : Prediction Analysis of Microarrays 50

pCR : Pathological complete response

PFS : Progression free survival

PgR : Progesterone receptor

QNBC : Quadruple negative breast cancer

ROR: Risk-of-recurrence
RS: Recurrence score

RTK : Receptor tyrosine kinase

SPSS : Statistical Package for Social Science

SEER : Surveillance, Epidemiology, and End Results

SREs: Skeletal-related events

TNBC: Triple negative breast cancer

TNF: Tumor necrotic factor

List of Tables

Table No.	. Title	Page No.
Table (1):	Estimated New Female Breast Can Cases and Deaths by Age	
Table (2):	Age-specific Probability of Develop Invasive Breast Cancer for US Women.	•
Table (3):	Commercially available prognos multi-gene signatures for breast can patients	cer
Table (4):	CDK4/6 inhibitors phase 3 traccording to endocrine sensitive resistance patients representation a outcome results	ity/ and
Table (5):	Distribution of the studied patie according to patient criteria	
Table (6):	Distribution of the studied patie according to disease criteria	
Table (7):	Distribution of the studied patie according to adjuvant treatment criteri	
Table (8):	Distribution of the studied patie according to metastasis and management	its
Table (9):	Progression free survival among studied patients	
Table (10):	Relation between menopausal status a progression free survival among studied patients	the

Table (11):	Relation between family history of MBC and progression free survival among the studied patients
Table (12):	Relation between Pathological types and progression free survival among the studied patients
Table (13):	Relation between PR nuclear stain and progression free survival among the studied patients
Table (14):	Relation between HER2 overexpression and progression free survival among the studied patients
Table (15):	Relation between proliferative index Ki67 and progression free survival among the studied patients
Table (16):	Relation between surgical management and progression free survival among the studied patients
Table (17):	Relation between adjuvant chemotherapy and progression free survival among the studied patients
Table (18):	Relation between breast irradiation and progression free survival among the studied patients
Table (19):	Relation between adjuvant hormonal treatment and progression free survival among the studied patients
Table (20):	Relation between onset of metastatic evolution and progression free survival among the studied patients

Table (21):	Relation between site of metastasis and progression free survival among the studied patients
Table (22):	Relation between first line therapy of metastasis management and progression free survival among the studied patients 81
Table (23):	Relation between type of hormonal therapy for metastasis management and progression free survival among the studied patients
Table (24):	Relation between ovarian ablation in premenopausal patients and progression free survival among the studied patients

List of Figures

Figure N	o. Title	Page No.
Figure (1):	Proportions of familial risk of br cancer explained by hereditary varia	
Figure (2):	Genes evaluated by multigene assay calculate a recurrence risk score	
Figure (3):	Kaplan Meier plot showing progres free survival among the studied pati	
Figure (4):	Kaplan-Meier plot showing relabetween progression free survival menstrual history	and
Figure (5):	Kaplan-Meier plot showing relabetween progression free survival family history	and
Figure (6):	Kaplan-Meier plot showing relabetween progression free survival pathological type	and
Figure (7):	Kaplan-Meier plot showing relabetween progression free survival presence of progesterone recenuclear stain	and ptor
Figure (8):	Kaplan-Meier plot showing relabetween progression free survival HER2 overexpression	and
Figure (9):	Kaplan-Meier plot showing relabetween progression free survival proliferative index (Ki67)	and

Figure (10):	Kaplan-Meier plot showing relation between progression free survival and type of surgical management
Figure (11):	Kaplan-Meier plot showing relation between progression free survival and type of adjuvant chemotherapy
Figure (12):	Kaplan-Meier plot showing relation between progression free survival and breast irradiation
Figure (13):	Kaplan-Meier plot showing relation between progression free survival and type of adjuvant hormonal therapy
Figure (14):	Kaplan-Meier plot showing relation between progression free survival and onset of metastatic evolution
Figure (15):	Kaplan-Meier plot showing relation between progression free survival and site of metastasis
Figure (16):	Kaplan-Meier plot showing relation between progression freesurvival and first line of treatment of metastatic disease
Figure (17):	Kaplan-Meier plot showing relation between progression free survival and type of hormonal therapy
Figure (18):	Kaplan-Meier plot showing relation between progression free survival and ovarian ablation

Introduction

Preast cancer is the most common type of cancer diagnosed in women, comprising 30% of all women's cancer diagnoses in the United States. The American Cancer Society estimated that 252, 710 new cases of breast cancer were diagnosed in women in 2017 (along with about 2470 cases in men). Breast cancer is the second leading cause of cancer-related death in women after lung cancer, accounting for 12% of cancer-related deaths (Siegel et al., 2017).

The use of systemic therapies such as hormonal therapy, chemotherapy or new biological treatment is to reduce tumour masses, improve survival and preserve quality of life. Whatever the initial efficacy of the treatment undertaken in metastatic setting, almost every patient will relapse. The main goal is to improve progression free survival (PFS) (**Dickson et al., 2005**).

Michiels et al. (2016) assessed to what extent PFS may be used as a surrogate for OS in randomized trials of anti-HER2 agents in HER2+ MBC. PFS moderately correlates with OS at the individual level and treatment effects on PFS correlate moderately with those on overall mortality, providing only modest support for considering PFS as a surrogate. PFS does not completely substitute for OS in this setting.