

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

A study on different approaches that can be used to combat resistance caused by MDR *Acinetobacter baumannii* pathogens

A Thesis

Submitted in Partial Fulfillment of the Requirements for the

Master degree

In Pharmaceutical Sciences (Microbiology and Immunology)

By

Nancy Gamil Banoub Dimitry

Bachelor of Pharmaceutical Sciences, 2017 Faculty of Pharmacy, Heliopolis University

A study on different approaches that can be used to combat resistance caused by MDR *Acinetobacter baumannii* pathogens

A Thesis

Submitted in Partial Fulfillment of the Requirements for the

Master degree

In Pharmaceutical Sciences (Microbiology and Immunology)

By

Nancy Gamil Banoub Dimitry

Bachelor of Pharmaceutical Sciences, 2017 Faculty of Pharmacy, Heliopolis University

Under Supervision of

Dr. Khaled Mohammad Anwar Aboshanab, PhD

Professor of Microbiology and Immunology, Vice Dean for graduate students and scientific research, Faculty of pharmacy, Ain shams University

Dr. Sarra Ebrahim Saleh, PhD

Lecturer of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University

Dr. Hala SalahEldin Helal, PhD

Lecturer of Microbiology and Immunology, Faculty of Pharmacy, Heliopolis University

Acknowledgments

First of all, I am thankful to God for providing me this opportunity and granting me the capability to proceed successfully. I would like to offer my sincere thanks to my guides and peers without whose guidance and support I wouldn't have struggled to bring this thesis to its current state.

I would like to express my deepest thanks to **Prof. Dr. Khaled Mohammad Anwar Aboshanab**, Professor of Microbiology and Immunology and Vice dean for Graduate Studies and Research, Faculty of Pharmacy, Ain Shams University, who suggested the point of research, for his kind supervision, interest, valuable advice and giving help to accomplish this work as well as his effort in publication of scientific article.

My deepest gratitude and appreciation are expressed to **Dr. Sarra Ebrahim Saleh**, Lecturer of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, for her divine support and her constructive criticism, guided me immensely throughout the work and during the revision of the thesis.

I am also greatly indebted to **Dr. Hala SalahEldin Helal**, Lecturer of Microbiology and Immunology, Faculty of Pharmacy, Heliopolis university, for her valuable scientific supervision, constructive advice and continuous guidance throughout the work.

I would also like to thank my dear friends **Doaa El Nashar** and **Manar Elyamani** for their help and support during this work. Besides, I would like to thank all the staff members at Al Kasr Al Aini Hospital, for their help during collection of specimens.

Finally, I am greatly grateful to my family especially to my FATHER for his support and encouragement, my MOTHER for her care and efforts. Special thanks for my brothers and my sister for their help, encouragement and patience during finalizing the present work; I love you deeply.

Nancy Gamil

Table of Contents

TABLE OF CONTENTS	I
LIST OF ABBREVIATIONS	IV
LIST OF FIGURES	VII
LIST OF TABLES	VIII
ABSTRACT	1
INTRODUCTION	3
LITERATURE REVIEW	7-42
1.1. The genus Acinetobacter	7
1.2. Taxonomic classification of <i>Acinetobacter</i> species	7
1.3. Natural habit of A. baumannii	8
1.4. Identification of A. baumannii	9
1.5. Pathogenesis and virulence factors	10
1.6. Infections caused by A. baumannii and their clinical	
manifestations	12
1.7 Risk Factors predisposing to A. baumannii infections	18
1.8. Antibiotic discovery and misuse	18
1.9. Diversity of Antibiotic resistance	19
1.10. Antibiotic resistance: A global threat	22
1.11. Mechanisms of antimicrobial resistance in A. baumanni	23

1.12.	Strategies to combat resistance caused by MDR A. bauman	ınii
patho	ogens29	
1.13.	Combination therapy	.31
1.14.	Nanotechnology and Nanoparticles	.33
1.15.	Chitosan Nanoparticles	.38
MAT	TERIALS AND METHODS	-67
MAT	ERIALS43	-49
1.	Microorganisms	. 43
2.	Chemicals	. 43
3.	Antimicrobial agents	
4.	Media	
5.	Kits	
6.	Buffers and Solutions	. 48
7.	Primers	
8.	Equipments & Apparatus	. 49
MET	HODS50	
10.	Collection of specimens	
11.	Isolation and preservation of clinical pathogens	
12.	Identification of A. baumannii isolates	
13.	Antimicrobial susceptibility testing by disk diffusion method	, 56
14.	Determination of minimum inhibitory concentration of Colis	tin,
	Tigecycline and Meropenem by micro-broth dilution method	. 58
15.	Molecular typing of recovered isolates	. 60
16.	Evaluation of antibiotic combinations	. 61

17.	Preparation of CNPs62
18.	CNPs characterization63
19.	Antimicrobial activity of chitosan nanoparticle by Well-cut diffusion technique
20.	Antimicrobial activity of chitosan nanoparticle by broth dilution technique
21.	Evaluation of CNPs-antibiotic combinations by broth dilution technique 66
RESU	ULTS68-82
1.	Isolation and identification of clinical isolates
2.	Susceptibility of the A. bauamnnii against different antibiotics 69
3.	ERIC-PCR analysis of recovered isolates72
4.	Evaluation of antibiotic combinations75
5.	Characterization of CNPs77
6.	Antimicrobial activity of CNPs79
7.	Evaluation of CNPs-antibiotic combinations81
DISC	USSION83
CON	CULSION90
SUM	MARY91
REF	ERENCES93
APPI	ENDIX130
ARA	BIC SUMMARY131

MSc Thesis 2021 Page III

List of Abbreviations

μg	Micro-gram
μl	Micro-liter
A.	Acinetobacter
A/S	Ampicillin-sulbactam
ABC	ATP-binding cassette
Ags	Aminoglycosides
AK	Amikacin
AMEs	Aminoglycoside-modifying enzymes
CDC	Centers for Disease Control and Prevention
CIP	Ciprofloxacin
CLSI	Clinical and Laboratory Standards Institute
CN	Gentamicin
CNPs	Chitosan nanoparticles
СРМ	Ceftriaxone
CSF	Cerebrospinal fluid
CT	Colistin
DLS	Dynamic Light Scattering
DNA	Deoxyribo Nucleic Acid
DO	Doxycycline
EDTA	Ethylenediamine tetra-acetic acid

MSc Thesis 2021 Page IV

ERIC-PCR	Enterobacterial Repetitive Intergenic Consensus-Polymerase
	Chain Reaction
FDA	Food and Drug Administration
FEP	Cefepime
FICI	Fractional Inhibitory Concentration Index
h	Hours
HR-TEM	High resolution -Transmission electron microscope imaging
I	Intermediate
ICUs	Intensive care units
IDSA	Infectious Diseases Society of America
IPM	Imipenem
MDF	Minimum inhibitor concentration decrease factor
MDR	Multidrug resistance
MEM	Meropenem
MFS	Major Facilitator Superfamily
МНА	Mueller Hinton agar
MIC	Minimum Inhibitory Concentration
ml	Milli-liter
MTCE	Multidrug and toxic compound extrusion
NPs	Nanoparticles
°C	Celsius
PACE	Proteobacterial antimicrobial compound efflux

MSc Thesis 2021 Page V

PBPs	Penicillin binding proteins
PCR	Polymerase Chain Reaction
PD	Pharmacodynamics
PRL	Piperacillin
R	Resistant
RNA	Ribonucleic Acid
RND	Resistance/nodulation/division
ROS	Reactive oxygen peroxide
S	Susceptible
S. aureus	Staphylococcus aureus
SMR	Small multidrug resistance
SXT	Trimethoprim-sulfamethoxazole
TBE	Tris borate EDTA
TGC	Tigecycline
Tris	Trishydroxymethylaminomethane
TZP	Piperacillin-tazobactam
UPGM	Unweighted pair group method
UTI	Urinary tract infection
VAP	Ventilator-associated pneumonia
WHO	World Health Organizations
XDR	Extensively-drug resistance

MSc Thesis 2021 Page VI

List of Figures

Figure	Title	Page
1	Mechanisms of antibiotic resistance in <i>Acinetobacter</i> species.	25
2	Agarose gel electrophoresis of the PCR analysis of recA gene	68
3	Agarose gel electrophoresis of the ERIC-PCR analysis of the 51 MDR A. baumannii clinical isolates	73
4	Dendrogram of ERIC-PCR on 51 strains of A. baumannii	74
5	FICI values of three tested antibiotic combinations against nine MDR A. baumannii	76
6	Total percentage of synergy, additive, and antagonistic effects	77
7	Size distribution of CNPs by zeta sizer	77
8	Zeta potential of CNPs by zeta sizer	78
9	HR-TEM micrograph of CNPs	78
10	Well-cut Diffusion Technique	7 9

MSc Thesis 2021 Page VII

List of Tables

Tables	Title	Page
1	Virulence factors of A. baumannii	10
2	Chemicals used in this study and their sources	43
3	Antibiotic discs used in susceptibility testing	45
4	Antibiotics used for preparation of combination	46
5	Ready media	46
6	Simmons citrate ingredients	47
7	Kits	47
8	Agarose gel 1% preparation	48
9	Oligonucleotide primers sequences	48
10	Equipment and Apparatus	49
11	Components of PCR Reaction	54
12	Cycling conditions of the primers during Cpcr	55
13	Preparation of Tris borate EDTA (TBE) electrophoresis buffer	55
14	Interpretation of zones of inhibition in agar diffusion method for antimicrobial susceptibility test	57
15	Interpretation of MIC in micro-dilution broth method for antimicrobial susceptibility test	60
16	Antibiogram analysis of the 51 of A. baumannii clinical isolates	70
17	MIC values of the tested antibiotics either alone or in combinations	75

MSc Thesis 2021 VIII

List of Tables

18	FICI values of two tested antibiotic combinations against MDR A. baumanni	76
19	Average of Inhibition diameter of CNPs against MDR A. baumannii	80
20	MIC values CNPs gainst MDR A. baumannii by broth dilution.	81
21	Effects of CNPs (5 mg/ml) on the MIC of MEM, TGC and CT (eachalone or in combinations)	82

MSc Thesis 2021 VIII