

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Cairo University Faculty of Veterinary Medicine Department of Food Hygiene and Control

Decontamination of broiler chicken breast fillets using innovative cold plasma technology

Thesis Submitted by

Eslam Mohamed Sayed Mohamed

B.V.Sc., Cairo University, 2017

For the Degree of M.V.Sc., Meat Hygiene and Control and its Products

Under Supervision of

Dr. Fathi A.M. EL-Nawawi

Professor of Meat Hygiene Faculty of Veterinary Medicine Cairo University

Dr. Heba H.S. Abdel-naeem

Dr. Khaled H.M. Khalil

Assistant professor of Meat Hygiene Faculty of Veterinary Medicine Cairo University Lecturer of Physics and Head of plasma unit-Faculty of Science Al-Azhar University Cairo University
Faculty of Veterinary Medicine
Department of Food Hygiene and Control

Name: Eslam Mohamed Sayed Mohamed

Date of birth: 20/12/1994

Degree: M.V.SC., **Nationality:** Egyptian

Specialization: Hygiene and Control of Meat and its Products

Title of the thesis: Decontamination of broiler chicken breast fillets using innovative cold

plasma technology

Supervision:

Dr. Fathi A.M. EL-Nawawi Professor of Meat Hygiene, Faculty of Veterinary

Medicine, Cairo University

Dr. Heba H.S. Abdel-naeem Assistant professor of Meat Hygiene, Faculty of Veterinary

Medicine, Cairo University

Dr. Khaled H.M. Khalil Lecturer of Physics and Head of plasma unit-Faculty of

Science, Al-Azhar University

Abstract

(**Keywords:** cold plasma; broiler chicken meat, decontamination, bacteriological quality, deterioration criteria, sensory attributes, topographical structure)

The increase of consumers' awareness about the term safety and the importance of the production of microbiologically safe chicken meat encouraged the researchers and food processors to discover a novel decontamination method that is chemically free. Atmospheric cold plasma (ACP) is an emerging non-thermal technology, showing great potential applications in the food industry. Therefore, the aim of this study to investigate the effect of ACP mainly dielectric barrier discharge with different gases (oxygen and argon) and different times (3 min and 5 min) at 20 kV on the bacteriological quality, deterioration criteria, physicochemical parameters, sensory attributes, and topographical structure of chicken breast fillets using the scanning electron microscope. Samples were divided into five groups as follow: the first and second groups were treated with oxygen at 3 min (Oxy3) and 5 min (Oxy5), while the third and fourth groups were treated with argon at 3 min (Ar3) and 5 min (Ar5) beside the control untreated samples. The results showed that all plasma-treated samples induced a significant reduction in all investigated bacterial counts, shear force, and pH values with non-significant changes in TBA, TVBN, and cooking loss%. Moreover, significant improvement of all sensory attributes in all plasma-treated samples except appearance and color scores of Oxy3 and Oxy5 samples were observed. The topographical structure of argon-treated samples showed severe fragmentation in muscle fiber with a wavy appearance and coagulated connective tissue while oxygen-treated samples revealed shallow cracks, coagulated muscle fibers, and amorphous mass connective tissue. The consumed power at the applied voltage (16kV) with oxygen and argon was 0.25 and 0.064 Watt, respectively. Accordingly, DBD plasma treatment with argon gas is a prospective decontamination method that could be applied safely at the poultry processing plants without any negative impact on the appearance and quality of poultry meat.

Dedication

To the memory of my father

To my mother

To my wife

To all my family

First of all, prayerful thanks to ALLAH, for everything I have.

ACKNOWLEDGEMENT

I wish to express my sincere gratitude to the supervisor *Dr. Fathi A.M. EL-Nawawi*, Professor of Meat Hygiene, Faculty of Veterinary Medicine, Cairo University, for his stimulating supervision, guidance, continuous encouragement unfailing help throughout this study and interest during supervising this work. Without his help and encouragement, this study would have never been completed.

My grateful appreciation and thanks to the supervisor *Dr. Heba H.S. Abdel-naeem*, Assistant Professor of Meat Hygiene, Faculty of Veterinary Medicine, Cairo University for her careful guidance, stimulating criticism and valuable discussion and advice which have made possible completion of this work.

I would like to express my thanks to the supervisor *Dr. Khaled H.M. Khalil*, Lecturer of Physics and head of plasma unit at Faculty of Science Al-Azhar University.

It is great pleasure for me to express my thanks and gratitude to **members of**Department of Food Hygiene and Control, Faculty of Veterinary Medicine,

Cairo University.

CONTENTS

Content	Page
Abstract	I
Dedication	II
Acknowledgement	III
Content	IV
List of tables	V
List of figures	VI
List of abbreviations	VII
Chapter (1): Introduction	1
Chapter (2): Review Article	4
2.1. Abstract	4
2.2. Introduction	4
2.3. Decontamination techniques of chicken meat carcasses	5
2.4. Novel approach for decontamination using plasma	
2.4.1. Plasma generation	
2.4.2. Classification of plasma and its generation sources	
2.4.3. Theories for microbial inactivation by cold plasma treatment	12
2.4.4. Factors affecting the microbial inactivation by cold plasma treatment	14
2.4.5. Effect of cold plasma treatment on chicken meat quality	19
2.4.6. Effect of cold plasma treatment on the quality of other food types	24
2.4.6.1. Cold plasma treatment in fish	24
2.4.6.2. Cold plasma treatment in fruits and vegetables	25
Chapter (3): Published papers	
3.1. The influence of cold plasma technology decontamination method on bacteriological quality and sensory attributes of chicken breast fillets	27
3.2. Cold plasma as a novel decontamination technology: Influence of processing parameters on bacteriological quality, physicochemical properties, sensory	40
attributes, and topographical structure of chicken breast fillets Chapter (4): Discussion	71
Chapter (4): Discussion	71
Chapter (5): Conclusions and Recommendations	78

Chapter (6): Summary	81
Chapter (7): References	84
Arabic summary	1-3
Arabic abstract	99

LIST OF TABLES

Table	Title	Page
3.1.1.	Sensory analysis of raw chicken breast fillets treated with DBD	32
	plasma using oxygen and argon gases at two different exposure times	
	(3 and 5 min)	
3.1.2.	Sensory analysis of cooked chicken breast fillets treated with DBD	32
	plasma using oxygen and argon gases at two different exposure times	
	(3 and 5 min)	
3.2.1.	Values of applied voltage and corresponding power values	62
3.2.2	Bacterial counts (Log ₁₀ CFU/g) of chicken breast fillets treated with	62
	DBD plasma using oxygen and argon gases at two different exposure	
	times (3 min and 5 min)	
3.2.3.	Deterioration criteria of chicken breast fillets treated with DBD	63
	plasma using oxygen and argon gases at two different exposure times	
	(3 min and 5 min)	
3.2.4.	Color evaluation, shear force value, and cooking loss% of chicken	64
	breast fillets treated with DBD plasma using oxygen and argon gases	
	at two different exposure times (3 min and 5 min)	

LIST OF FIGURES

Figure	Title	Page
2.1.	Decontamination techniques of chicken meat carcasses	5
2.2.	Four states of matter	10
2.3.	Diagram showing the generation of plasma	10
2.4.	Classification of plasma and its generation sources	11
2.5.	Mechanism of bacterial inactivation by plasma	12
2.6.	Classification of the factors affecting the microbial inactivation by	15
	plasma treatment	
3.1.1.	Bacterial reduction rates (Log ₁₀ CFU/g) of chicken breast fillets	31
	treated with DBD plasma using oxygen and argon gases at two	
	different exposure times (3 and 5 min).	
3.2.1.	Diagram illustrates dielectric barrier discharge system	44
3.2.2.	Diagram illustrates waveforms of the applied voltage to the reactor	65
	and associated current measured for (A) oxygen plasma at a gas	
	flow rate of 3 (L/min), (B) argon plasma at a gas flow rate of 3	
	(L/min), respectively.	
3.2.3.	Lissajous diagrams at 15.6 kV measured for (A) oxygen plasma at	65
	a gas flow rate of 3 (L/min), (B) 15.2 kV argon plasma at a gas	
	flow rate of 3 (L/min), respectively.	
3.2.4.	Sensory analysis of raw chicken breast fillets treated with cold	66
	plasma technology using oxygen and argon gases at two different	
	exposure times (3 min and 5 min).	
3.2.5.	Sensory analysis of cooked chicken breast fillets treated with cold	67
	plasma technology using oxygen and argon gases at two different	
	exposure times (3 min and 5 min).	
3.2.6.	Scanning electron micrographs of control untreated chicken meat	68

	fillet. Muscle fiber with magnification x 350 (A) and x 1000 (B);	
	Connective tissue with magnification x 1000 (C and D).	
3.2.7.	Scanning electron micrographs of DBD plasma-treated chicken	68
	meat fillet with oxygen gas for 3 min (Oxy3). Muscle fiber with	
	magnification x 350 (A) and x 1000 (B); Connective tissue with	
	magnification x 1000 (C and D).	
3.2.8.	Scanning electron micrographs of DBD plasma-treated chicken	69
	meat fillet with oxygen gas for 5 min (Oxy5). Muscle fiber with	
	magnification x 350 (A) and x 1000 (B); Connective tissue with	
	magnification x 1000 (C and D).	
3.2.9.	Scanning electron micrographs of DBD plasma-treated chicken	69
	meat fillet with argon gas for 3 min (Ar3). Muscle fiber with	
	magnification x 350 (A) and x 1000 (B); Connective tissue with	
	magnification x 1000 (C and D)	
3.2.10.	Scanning electron micrographs of DBD plasma-treated chicken	70
	meat fillet with argon gas for 5 min (Ar5). Muscle fiber with	
	magnification x 350 (A) and x 1000 (B); Connective tissue with	
	magnification x 1000 (C and D).	

LIST OF ABBREVIATIONS

APC Aerobic Plate Count AMSA American Meat Science Association AR Argon ADBD Atmospheric dielectric barrier discharge APP Atmospheric pressure plasma BP Baird Parker Media	
AR Argon ADBD Atmospheric dielectric barrier discharge APP Atmospheric pressure plasma	
ADBD Atmospheric dielectric barrier discharge APP Atmospheric pressure plasma	
APP Atmospheric pressure plasma	
BP Baird Parker Media	
CAP Cold atmospheric plasma	
CP Cold plasma	
CFU Colony forming unit	
CIE Commission Internationale de l'Eclairage	
DBD Dielectric barrier discharge	
DBD-HVCAP Dielectric barrier discharge high-voltage cold atmospheric plasma	
E. coli Escherichia coli	
EFSA European Food Safety Authority	
O3 Ozon	
GRAS Generally recognized as safe	
He Helium	
pH Hydrogen ions concentrations	
IR Infrared	
CIE International Commission on Illumination	
KV Kilo Voltage	
LSD Least square difference test	
L* Lightness	
MDA Malonaldehyde	
NO2 Nitric dioxide	
NO Nitric oxide	
NTP Non-thermal plasma	
ANOVA One-Way Analysis of Variance	
Oxy Oxygen	
ONOO- Peroxynitrite anion	
PFB Plasma functionalized buffer	
PFL Plasma functionalized liquids	
PFW Plasma functionalized water	
PCA Plate Count Agar	

RNS	Reactive nitrogen species
RONS	Reactive oxygen and nitrogen species
ROS	Reactive oxygen species
a*	Redness
RH	Relative Humidity
RSM	Response surface methodology
SEM	Scanning electron microscope
S. aureus	Staphylococcus aureus
SPSS	Statistical Package for the Social Sciences
TBA	Thiobarbituric acid
TVBN	Total volatile basic nitrogen
UV	Ultraviolet
VRBG	Violet Red Bile Glucose Agar Media
b*	Yellowness