

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

GPS DENIED NAVIGATION USING LOW-COST INERTIAL SENSORS AND RECURRENT NEURAL NETWORKS

By

AHMED ALI AHMED ABDULMAJUID

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the Requirements for the Degree of
MASTER OF SCIENCE
in
AEROSPACE ENGINEERING

GPS DENIED NAVIGATION USING LOW-COST INERTIAL SENSORS AND RECURRENT NEURAL NETWORKS

By

AHMED ALI AHMED ABDULMAJUID

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE in

AEROSPACE ENGINEERING

Under the Supervision of

Prof. Dr. Gamal M. El Bayoumi	Dr. Osama S. Mohammady
Professor of Control	Assistant Professor
Aerospace Department	Aerospace Department
Faculty of Engineering, Cairo University	Faculty of Engineering, Cairo University
Dr. Mohanna	ad A. Draz
Assistant P	rofessor

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2021

Aerospace Department Faculty of Engineering, Cairo University

GPS DENIED NAVIGATION USING LOW-COST INERTIAL SENSORS AND RECURRENT NEURAL NETWORKS

By

AHMED ALI AHMED ABDULMAJUID

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

in

AEROSPACE ENGINEERING

Thesis Main Advisor
Internal Examiner
External Examiner

Engineer's Name: Ahmed Ali Ahmed AbdulMajuid

Date of Birth 3 / 9 / 1993 **Nationality:** Egyptian

E-mail: amajuid@hotmail.com

Phone: 010 30 33 4 990

Address: 1st District, Sheikh Zayed City, Giza, Egypt

Registration Date: 1/3/2019 **Awarding Date:** //2021

Degree: Master of Science **Department:** Aerospace Engineering

Prof. Dr. Gamal M. El Bayoumi Dr. Osama S. Mohammady Dr. Mohannad A. Draz

Examiners:

Prof. Dr. Gamal M. El Bayoumi
Prof. Dr. Mohammed S. Bayoumi
Prof. Dr. Gamal A. El Sheikh
Thesis Main Advisor
Internal Examiner
External Examiner

Pyramids Higher Institute of Engineering

and Technology,

Title of Thesis:

GPS DENIED NAVIGATION USING LOW-COST INERTIAL SENSORS AND RECURRENT NEURAL NETWORKS

Key Words:

Inertial Navigation, Recurrent Neural Networks, Estimation in Drones

Summary:

Autonomous missions of drones require continuous and reliable estimates for their velocity and position. Traditionally, Extended Kalman Filtering (EKF) is applied to measurements from Gyroscope, Accelerometer, Magnetometer, Barometer and GPS to produce these estimates. When the GPS signal is lost, estimates deteriorate and become unusable in a few seconds, especially when using low-cost inertial sensors. This thesis proposes an estimation method that uses a Recurrent Neural Network (RNN) to allow reliable state estimates in the absence of GPS signal. On average, EKF positioning error grows to around 40 kilometers in five minutes of GPS-less typical drone flight. The proposed method reduces that error by 98% in the same GPS outage period.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Ahmed Ali Ahmed AbdulMajuid Date: / / 2021

Signature:

Acknowledgments

First and foremost I am extremely grateful to my supervisors, Prof. Dr. Gamal El Bayoumi, Dr. Osama Mohammady, and Dr. Mohannad Draz for their invaluable advice, continuous support, and patience during my master's study.

I would also like to thank my friend, Eng. Mohammed Hetta and my sister Dr. Amal AbdulMajuid for hosting the ground field tests.

I would also like to thank my friends Eng. Ahmed Khairy, Eng. Ahmed Bayram, Eng. Wessam Ahmed, Eng. Ahmed Al Sebae and Eng. Mohammed Ebeid for their precious encouragement and support that got me through with this work.

I would also like to thank Eng. Mohammad Al Deweny for his help with the hardware procurement and deployment.

Finally, I would like to express my gratitude to my family. Without their tremendous understanding and encouragement in the past few years, it would have been impossible for me to complete my study.

Contents

C	onten	IS	III		
Li	ist of '	Tables	vii		
Li	ist of l	Figures	ix		
N	omen	clature	xiii		
A]	BSTR	ACT	xvi		
1	Intr	Introduction			
	1.1	Importance of State Estimation	1		
	1.2	Sensor Fusion	1		
	1.3	Global Positioning System (GPS)	2		
	1.4	Progress in GPS-Denied Navigation Using Neural Networks	3		
	1.5	Proposed Contributions	4		
	1.6	Thesis Overview	5		
2	Iner	tial Navigation, Kalman Filtering and Neural Networks	7		
	2.1	Inertial Navigation	7		
		2.1.1 Frames of Reference	7		
		2.1.2 Inertial Navigation Basics	11		
		2.1.3 Errors in Inertial Navigation	12		
	2.2	Kalman Filtering	14		
		2.2.1 Overview	14		
		2.2.2 Extended Kalman Filter	15		

		2.2.3	Practical EKF Estimator	15
	2.3			21
		2.3.1	Curve Fitting as an Alternative Solution	21
		2.3.2	Projecting to Inertial Navigation	23
		2.3.3	Neural Networks Basic Concepts	23
		2.3.4	Recurrent Neural Networks	26
3	Har	dware,	Data Collection and Preprocessing	29
	3.1	Sensor	rs and Hardware	29
	3.2	Datase	et Collection and Split	30
	3.3	Netwo	ork Inputs and Outputs (Features and Labels)	32
		3.3.1	Different Sensors Update Rates	32
		3.3.2	Features Combinations	34
	3.4	Data Preprocessing		
		3.4.1	Data Windowing	34
		3.4.2	Predicting Changes in States (Differences)	35
		3.4.3	Ground Time Trimming	37
	3.5	Manual Cleanup of Dataset		
4	Netv	work De	esign, Tuning and Training	41
	4.1	Iterativ	ve Design of Neural Networks	41
	4.2	General Architecture		42
	4.3			43
	4.4			44
		4.4.1	Network Size	44
		4.4.2	Window Size	47
		4.4.3	Regularization	48
		444	Learning Rate	49

		4.4.5	Activation Functions	50
		4.4.6	Batch Size	50
		4.4.7	Number of Epochs	52
		4.4.8	Loss Function	52
		4.4.9	Other Hyperparameters	54
	4.5	Practic	cal Hyperparameters Search	54
5	Res	ults and	d Discussion	55
	5.1	Highes	st Accuracy Design	55
		5.1.1	Training Performance	56
		5.1.2	Validation Performance	59
	5.2	Attitu	de Predictions	71
	5.3	Veloci	ty From Position Differences	73
	5.4	Comm	nents and Limitations	76
		5.4.1	Typical Usage and Update Rate	76
		5.4.2	Attitude Prediction Accuracy	76
		5.4.3	Recovering from Faulty Measurements	76
		5.4.4	Errors in Ground Truth	77
		5.4.5	Average Flight Duration	77
6	Field	d Testin	g and Real-Time Inference	79
	6.1	Systen	n Outline	79
	6.2	Deploy	yment on Companion Computer	80
		6.2.1	Timing	81
		6.2.2	Data Loss and Multithreading	81
		6.2.3	Data Latency	82
		6.2.4	Data Corruption	82
		6.2.5	Real-time Preprocessing	82
		6.2.6	Different Units and Axis Conventions	83
	6.3	Transf	er Learning to Ground Host Vehicle	84
	6.4	Online	e vs Offline Predictions	86

7	Conclusion and Future Work			95
7.1 Future Work		Work	95	
		7.1.1	Network Customization	95
		7.1.2	More Transfer Learning	96
		7.1.3	High Precision Ground Truth Source	96
		7.1.4	Regularization	96
		7.1.5	Alternatives to Features Averaging	96
Do	feren	COC		97
1/6	161611	CCS)

List of Tables

1.1	Main autopilot sensors	2
2.1	Pixhawk Sensors Update Rates	15
3.1	Pixhawk 4 Sensors	29
3.2	Allowed Flight Logs Characteristics	30
3.3	Different host vehicle types	31
3.4	Windowing	35
4.1	Performance of Networks with Different Number of Recurrent Layers	46
4.2	Performance of Networks with Different Number of Nodes in Hidden Layers	47
4.3	Different Window Sizes	48
4.4	Learning Rate Schedule	50
4.5	Different Batch Sizes	51
5.1	Network Architecture and Hyperparameters	56
5.2	Training Performance of the Highest Accuracy Design	56
5.3	Validation Performance of the Highest Accuracy Design	59
5.4	Validation Performance in Underrepresented Vehicle Types	67
5.5	Performance when Velocity is Calculated from Position Differences	74
6.1	Validation Results with and without Transfer Learning	86
6.2	Validation Performance on the Car Dataset	86

