

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

ASSESSMENT OF POTENTIAL GENOTOXIC EFFECTS OF SOME COMMONLY USED FLAVORS THROUGH GENETIC AND MOLECULAR SHORT-TERM ASSAYS

By

MOHAMED RAAFAT ABU-ELMAATI SALAMA

B.Sc. Agric. Sci. (T.M.A.P.E.S), Ain Shams University, 2014

A Thesis Submitted in Partial Fulfillment
Of
The Requirement for the Degree of

in
Agricultural Sciences
(Genetics)

Department of Genetics
Faculty of Agriculture
Ain Shams University

Approval Sheet

ASSESSMENT OF POTENTIAL GENOTOXIC EFFECTS OF SOME COMMONLY USED FLAVORS THROUGH GENETIC AND MOLECULAR SHORT-TERM ASSAYS

By

MOHAMED RAAFAT ABU-ELMAATI SALAMA

B.Sc. Agric. Sci. (T.M.A.P.E.S), Ain Shams University, 2014

ure, Benha University.
hams University.
hams University.
nams University.

Date of Examination: 31 / 8 / 2021

ASSESSMENT OF POTENTIAL GENOTOXIC EFFECTS OF SOME COMMONLY USED FLAVORS THROUGH GENETIC AND MOLECULAR SHORT-TERM ASSAYS

By

MOHAMED RAAFAT ABU-ELMAATI SALAMA

B.Sc. Agric. Sci. (T.M.A.P.E.S), Ain Shams University, 2014

Under the supervision of:

Dr. Khalid Ibn El-Walid Fahmy

Prof. of Genetics, Department of Genetics, Faculty of Agriculture, Ain Shams University (Principal Supervisor).

Dr. Naglaa Mohammed Ebeed

Prof. of Genetics, Department of Genetics, Faculty of Agriculture, Ain Shams University.

Dr. Neima Koutb El - Senosy

Associate Prof. of Genetics, Department of Genetics, Faculty of Agriculture, Ain Shams University.

ABSTRACT

This study was carried out at the Molecular and Cytogenetic Genetics Laboratories of the Department of Genetics, Faculty of Agriculture, Ain Shams University, Egypt, and The National Research Center, Giza, Egypt, during the period from 2016 to 2021.

Since the mid-1950s, the volatile structure of butter oil and butter were researched, and an exhaustive list of elements has been collected. Diacetyl is an aromatic popular synthetic fragrance that gives food a buttery taste used in ice cream, snacks and potting with butter, strawberry, caramel, or cheese flavor. The chromosomal aberrations and micronuclei are commonly used biomarkers of chromosomal damage, genome stability, and cancer risk assessment. In vivo trials are still important to assess the genetic toxicology of chemical products such as industrial chemicals, pharmaceuticals, and food additives. This study aimed at assessing the potential genotoxic effect of diacetyl and butter flavors on swiss albino mice using alterations in liver function enzymes, micronucleus (MN), and chromosomal aberrations (CA) assays. The results showed that exposure of swiss albino mice males to diacetyl and butter flavors induced (CA) and (MN) in a statistically highly significant manner compared to the control. Meanwhile, the biochemical analysis revealed that these substances caused an exceptional rise in liver function enzymes (AST, ALT, and ALP) activity in serum of treated experimental animals. The effect of these flavors on cell viability of the normal human liver cell line THLE2 was tested using MTT assay. were carried out. The real-time-PCR and western blotting techniques were used to measure the mRNA levels of p53, Bcl 2, Caspase 3, and RIP1, genes that play key roles in the cell cycle, apoptosis, and necrosis, and their protein expression levels in the liver of diacetyl and butter flavors-treated male mice. The diacetyl and butter flavors treatment resulted in the up-regulation of p53, Caspase 3, and RIP1 and the down regulation of Bcl-2 as well as their protein products suggesting the activation of apoptotic and necrotic pathways. Finally, comet assay showed significant DNA damage in liver cells of diacetyl and butter flavors-treated mice indicating its potential genotoxic effect. In conclusion, both tested compounds have increased the chromosomal aberration, micronucleus test, and serum levels of liver function enzymes and occurred DNA damage in liver cells and both tested compounds have decreased the cell line viability and apoptotic and necrosis events indicating their high potential of being cytotoxic and genotoxic materials.

Keywords: Diacetyl; Butter flavors; micronuclei; chromosomal aberrations; liver function enzymes, comet assay, THLE2, western blots, real time-PCR.

ACKNOWLEDGEMENT

First and above all, I praise Allah, the almighty for providing me this opportunity and granting me the capability to successfully proceed with this thesis to appears in its current form.

I would like to express my deep gratitude and sincere appreciation to the soul of **Prof. Dr. Abdel-Fattah A. Awad**, Prof. of Genetics, Faculty of Agriculture, Ain Shams University for continuous supervision, kind encouragement, precious advice during the progress of thesis work.

I would like to express my sincere gratitude to my supervisor **Prof. Dr. Khalid Ibn-Elwaled Fahmy** Prof. of Genetics, Faculty of Agriculture, Ain Shams University for the continuous support of my M.Sc. study and research, for suggesting the problem, his patience, motivation, and immense knowledge. His guidance helped me in all the time of research and his help in writing and reviewing this thesis. Words are not enough to express how grateful I am to him.

I am grateful to my supervisor warmly **Prof. Dr. Naglaa Mohammed Ebeed** Prof. of Genetics, Faculty of Agriculture, Ain Shams

University, whose encouragement and supervision, and support from the initial to the final levels enabled me to develop an understanding of the introduction and gave me moral support needed to complete the thesis.

The author is greatly indebted to **Dr. Neima Kouth Al-Senosy**, Faculty of

Agriculture, Ain Shams University for suggesting the problem, sincere support, effective, valuable help, encouragement, and her help in preparing the manuscript.

Sincere thanks and appreciation to **prof. Dr. Amr Farouk**, Prof. of the National Research Center for his excellent advice, gave me the needed support to complete the thesis.

I also want to express my deepest gratitude to **Dr. Wesam Basal**. Lecturer of Zoology Department, Faculty of Science, Cairo Univ. for his excellent guidance, caring, patience.

Thanks, to **Dr. Mona Abd El Gawad**, Prof. of National Gene Bank for her excellent advice, who gave me the support needed to complete this work.

I am particularly grateful for the assistance is given to **Dr. Marwa Mahmoud El-Attar** who without their persistent help this thesis, would not have been possibly finished.

Thanks, should be extended to Genetics Department members, especially for her excellent advice, who gave me the support needed to complete the thesis.

Great thanks and sincere gratitude to the soul of my father for his support for me in all the fields in life, my mother for her continuous encouragement and praying for me, brother, sisters, and my friends Hadeer Yousry Mohammed, Shaima Ahmed Shebl, and Shams Ahmed Hussein for their encouragement and continuous support.

CONTENTS

	Page
LIST OF TABLES	IV
LIST OF FIGURES	VI
LIST OF ABBREVIATION	X
INTRODUCTION	1
REVIEW OF LITERATURE	4
1. Assessment effect of potential food additives	4
2. Flavors	7
2.1. natural butter flavor categories	9
2.1. Diacetyl (DA)as food flavors	11
3. Detection of components butter flavor of <i>In-vitro</i> bioassays	15
3.1. Gas Chromatography Mass Spectrometry	15
3.2. MTT Assay to determine the cytotoxicity of agents	17
3.2.1. Human cell lines	19
3.3. Epigenetics regulation	20
3.3.1. DNA methylation	21
4. In vivo experiment (male mice model)	22
4.1. liver Enzymes	22
4.2. Chromosomal Aberrations in metaphase cells	24
4.2.1. Chromosomal structure aberrations	24
4.2.2. Chromosomal numerical aberrations	24
4.3. Micronucleus disruption	25
4.4. Assessment DNA fragmentation using single-cell gel	
electrophoresis (comet assay)	26
4.5. Regulation apoptosis and necrosis -related genes	27
451 5	
4.5.1. Estimation of apoptosis and necrosis-regulatory genes	20
expression with quantitative real-time PCR	29
4.5.2. Histopathological examination	29
4.5.3 Apoptosis and necrosis-related proteins in mice cells using	
western blotting technique western blotting	31
MATERIALS AND METHODS	33
1. Materials	33
1.1. Diacetyl and butter flavor Dosing	33
1.2. Experimental animals	34

1.3. Cell lines.	34
1.4. Chemicals	34
2. Methods	35
2.1. Chemical Assay	35
2.1.1. Gas Chromatography –Mass Spectrometry analysis of butter	
flavors	35
2.2. Biological Assay	36
2.2.1. <i>In vitro</i> experiment	36
2.2.1.1Cell lines and cell culture	36
2.2.1.1.1 Cell viability determination by MTT assay (determination	
of IC50)	37
2.2.1.2 Global DNA methylation about normal liver cell line	
(THLE2)	38
2.2.2 In vivo experiment	39
2.2.2.1 Housing and maintain of animals	39
2.2.2.2 Experimental design and treatments	40
2.2.2.3. liver Enzymes	41
2.2.2.3.1. Determination of serum aspartate aminotransferase	
(AST) activity Principle	41
2.2.2.3.2. Determination of serum alanine aminotransferase (ALT)	
activity Principle	41
2.2.2.3.3. Determination of serum alkaline phosphatase (ALP)	
activity Principle	42
2.2.2.4. Mitotic Metaphase Chromosome Preparation from	
Bone Marrow	42
2.2.2.4.1. Slide Making and Staining	43
2.2.2.5. In vivo rodent micronucleus assay	44
2.2.2.6. Assessment DNA fragmentation using single-cell gel	
electrophoresis on liver mice (comet assay)	44
2.2.2.7 Quantitative- Real-Time Polymerase Chain Reaction	
(qRT-PCR)	48
2.2.2.7.1. RNA extraction from liver cell of male mice	48
2.2.2.7.2. Quantification of RNA using Nanodrop apparatus	50
2.2.2.7.3. cDNA synthesis	51
2.2.2.7.4. Real time PCR (qRT-PCR)	51
2.2.2.7.5. Histopathological examinations of liver mice	52
2.2. 2.7.6. Western blotting	53
RESULTS AND DISCUSSION.	55

1. Chemical Assay	55
1.1. Gas Chromatography Mass Spectrometry (GC mass) for butter	
flavor	55
2. Biological Assay	58
2.1. In vitro experiment	58
2.1.1 Cytotoxic activity adherent human normal liver cell line	
(THLE2)	58
2.1.2 Global DNA methylation	60
2. 2. In vivo experiment	62
2.2.1. liver Enzymes	62
2.2.2. Chromosomal aberration assay of diacetyl and butter flavors	66
2.2.3. micronucleus assay of diacetyl and butter flavors	70
2.2.4. Assessment DNA fragmentation using single-cell gel	
electrophoresis on liver mice (comet assay)	73
2.2.5. Determination of the expression levels of regulatory	
apoptotic and necrosis-related genes	77
2.2.5.2. Determination of the histopathological examinations of	
liver mice	81
2.2.5.3. Determination of the expression levels of apoptosis and	
necrosis -related proteins in liver cell using western blot	
technique	85
2.2.6. General Discussion.	88
SUMMARY	90
REFERENCES	92
ARARIC SUMMARV	

LIST OF TABLES

No.		Page
1	Recommended toxicological tests for additives used in	
	food	7
2	Artificial flavoring agents and their flavors	9
3	Forward and reverse primers used in qPCR	52
4	Volatile constituents identified from the butter flavor	
	using GC-MS	56
5	Effect of butter flavor and diacetyl supplementation on	
	global DNA methylation level (5-mC %) in normal	
	liver cells	61
6	Effect of diacetyl and butter flavors on serum alkaline	
	phosphatase ALP activity, serum alanine amino	
	transferase ALT activity and serum aspartate amino	
	transferase AST activity in male mice for acute	
	treatment and chronic treatment	65
7	Chromosomal aberrations of male mice in bone	
	marrow cells treated with diacetyl, and butter flavors	67
8	Genotoxicity evaluation of diacetyl and butter Flavors	
	on the micronuclei of bone marrow in the male mice	71
9	Detection of DNA fragmentation by the comet assay,	
	assessed as tail moment and tail length in liver mice	
	treated with diacetyl and butter flavors (acute	
	treatments)	74
10	Detection of DNA fragmentation by the comet assay,	
	assessed as tail moment and tail length in liver mice	
	treated with diacetyl and butter flavors (chronic	
	treatments)	74
11	Prorate expression levels of Caspase 3, Bcl-2, P53, and	
	RIP1 genes in liver cells of mile mice following	
	treatments with diacetyl and butter flavors in acute	
	treatment	78

No.		Page
12	Prorate expression levels of Caspase 3, Bcl-2, P53, and RIP1 genes in liver cells of mile mice following treatments with diacetyl and butter flavors in chronic	
	treatment	79
13	Band quantification Caspase 3, and RIP1 proteins expression after treatment diacetyl and butter flavors	
	with acute treatment	87
14	Band quantification Caspase 3, and RIP1 proteins expression after treatment diacetyl and butter flavors	
	with chronic treatment.	87