

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

# بسم الله الرحمن الرحيم





HANAA ALY



شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله



شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم



HANAA ALY



شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

# جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات



يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار



HANAA ALY



وَمَا تَوْفِيقِي إِلَّا بِاللَّهِ عَلَيْهِ تَوَكَّلْتُ وَإِلَيْهِ أُنِيبُ

صيكة والله العظيم

#### **Evaluation of a Newly Formulated Antibacterial Flowable Composite Material**

Thesis Submitted to the Biomaterials Department Faculty of Dentistry Ain-Shams University in partial fulfillment of the requirements for the PhD Degree in Biomaterials Science

#### By

#### Mahitab Mohamed Mansour

B.D.Sc. MSA University (2009)
M.D.Sc. Cairo University (2017)
Assistant Lecturer of Dental Biomaterials Science
Faculty of Dentistry
October University for Modern Sciences and Arts
(MSA)

Biomaterials Department Faculty of Dentistry Ain-Shams University 2021

### **SUPERVISORS**

### Professor Dr. Tarek Salah El-Dine Hussein

Professor of Dental Biomaterials
Faculty of Dentistry
Ain -Shams University

#### Associate Prof. Dr. Haidy Nabil Salem

Associate professor of Dental Biomaterials Restorative and Dental Materials Department

National Research Center

# Acknowledgment

Words cannot express my gratitude towards **Prof. Dr. Tarek Salah**, Professor of Biomaterials, Faculty of Dentistry, Ain-Shams University, for his kind supervision, valuable guidance, constructive criticism and from whom I have learnt a lot. I will always be greatly indebted to his tremendous support, unforgettable help, understanding and modesty. "Thank you for your precious trust".

I am greatly honored to express my utmost gratefulness and appreciation to **Associate Prof. Dr. Haidy Nabil Salem** researcher of Dental Biomaterials, National Research Center for her close supervision, continuous encouragement, endless support, and sincere guidance.

I also want to express my deep gratitude to **Associate Prof. Dr. Hisham El Shishtawy** associate professor of microbial genetics, for his knowledge, assistance, guidance, and support in the microbiological component of this research.

I am fortunate to express my utmost gratefulness, love and appreciation to my mother, my ultimate role model, my backbone, and mentor Mrs. Mona El Degwi who has always helped and guided me throughout my entire life and whose love and unconditional support were always with me in whatever I pursued. Thank you for always trusting and believing in me.

I would also like to extend my appreciation to my beloved grandmother **Prof. Dr. Nawal El Degwi**, for her extensive care, support, and continuous guidance. Special thanks and great love are extended to my one and only sister **Engy Mansour** and my **beloved husband Mohamed El Badawy** who have surrounded me with all the support, understanding and care I ever wished for. I also want to thank my kids **Youssef**, **Nour and Taha** for being so patient with me in this journey, and for surrounding me with all the love I needed. Moreover, I appreciate the care, encouragement and support I've always received from my best friend **Reham Aboulnaga**.

Special thanks and great appreciation are owed to my dearest friends **Dr.Mai Hesham** and **Dr.Ahmed Wagdy** for their encouragement, help, support and care throughout this journey. I also want to thank my dear friends and colleagues at **MSA university**. Finally, I would like to cordially thank all the staff members of The Biomaterials Department, Faculty of Dentistry, **Ain-Shams University**, for their friendly support and care.

# **Dedication**



The soul of my grandfather, supporter, and God father

General Wagih El Degwi

The soul of my beloved uncle, my mentor & source of inspiration

Prof. Dr Sherif EL Degwi

And finally, to the soul of my best friend and soulmate

Dr.Miram El Fallah

I really wish you could have all been here to share with me such an accomplishment

May you rest in eternal peace ....

## **List of Contents**

|                                                               | Page |
|---------------------------------------------------------------|------|
| List of figures                                               | II   |
| List of tables                                                | V    |
| Introduction                                                  | 1    |
| Review of literature                                          | 4    |
| I. Historical background of esthetic restorations             | 4    |
| II. Chemistry and composition of dental resin composites      | 5    |
| II.1. The organic matrix                                      | 5    |
| II.1.2. The organic matrix (reinforcing phase)                | 7    |
| II.1.3. Coupling agent                                        | 8    |
| II.1.4. Initiator and activator systems                       | 8    |
| II.1.5. Pigments and other components                         | 9    |
| III. Classification                                           | 10   |
| IV. Flowable resin composites                                 | 11   |
| V. History of resin composites with antibacterial properties. | 14   |
| V.1.Triclosan                                                 | 15   |
| V.2. Benzalkonium chloride                                    | 15   |
| V.3. Fluoride releasing dental composites                     | 15   |
| V.4. Silver containing dental composites                      | 16   |
| V.5. Antibacterial pre-polymerized resin fillers              | 17   |
| V.6. Chlorhexidine containing dental resin composites         | 18   |
| VI. Recent antimicrobial agents in dentistry                  | 19   |
| VI.1. Octenidine dihydrochloride                              | 19   |
| Aim of the study                                              | 21   |
| Materials and Methods                                         | 22   |
| Results                                                       | 66   |
| Discussion                                                    | 107  |
| Summary and conclusions                                       | 134  |
| References                                                    | 138  |
| Arabic summary                                                |      |

### List of Figures

|                                                                                      | Page |
|--------------------------------------------------------------------------------------|------|
| Figure 1: Jenway 3505 bench pH meter                                                 | 27   |
| Figure 2: TEGRA SPEED electric fast sintering dental furnace                         | 28   |
| Figure 3: White clusters of the sintered nano-silica powder                          | 28   |
| Figure 4a: Grounding particles using agate mortar and pestle                         | 29   |
| Figure 4b: Powder after sieving                                                      | 29   |
| Figure 5: Sigma 3-16KL centrifugation machine                                        | 29   |
| Figure 6: Deposition of nano fillers after 30 minutes centrifugation                 | 30   |
| Figure 7: The precipitate in the petri dish                                          | 30   |
| Figure 8: BINDER hot air drying and heating oven                                     | 31   |
| Figure 9: The petri dish inside the desiccator                                       | 31   |
| Figure 10: Sputter coater                                                            | 33   |
| Figure 11: Scanning Electron Microscope (SEM)                                        | 34   |
| Figure 12: SCHIMADZU FTIR device                                                     | 35   |
| Figure 13: Split Teflon mold used for diametral tensile strength test                | 37   |
| Figure 14: Specimens of the diametral tensile strength test                          | 38   |
| Figure 15: Specimen under diametral tensile testing in the universal testing machine | 39   |
| Figure 16: Split Teflon mold used for compressive strength test                      | 40   |
| Figure 17: Specimens of the compressive strength test                                | 41   |
| Figure 18: Specimen under compressive strength in the universal testing machine      | 41   |
| Figure 19: Teflon mold used for flexural strength test                               | 42   |
| Figure 20: Specimens of the flexural strength test                                   | 43   |
| Figure 21: Specimen under flexural strength testing in the universal testing machine | 44   |
| Figure 22: Mold used for water sorption test                                         | 45   |
| Figure 23: Specimens of the water sorption test                                      | 45   |
| Figure 24: Mold used for water solubility test                                       | 47   |
| Figure 25: Specimens of the water solubility test                                    | 48   |
| Figure 26: Mold used for degree of conversion test                                   | 50   |
| Figure 27: Specimens of the degree of conversion test                                | 50   |
| Figure 28: Polymerized powder mixed with the KBr salt                                | 51   |
| Figure 29: SCHIMADZU pelleting device                                                | 52   |
| Figure 30a: Powder before obtaining the pellet                                       | 52   |
| Figure 30b: Powder after turning to a pellet                                         | 52   |
| Figure 31: Thirty-two freshly extracted sound human permanent premolars              | 54   |
| Figure 32: Top view of the premolars embedded in the colored acrylic blocks          | 55   |
| Figure 33: Teflon mold used for resin-dentin shear bond strength test                | 56   |
| Figure 34: Resin composite after curing on the teeth for the resin-dentin shear bond | 57   |
| strength test                                                                        |      |
| Figure 35a: Bacterial wells in the BHI media                                         | 59   |

| Figure 35b: Bacterial wells in the MRS media                                                      |
|---------------------------------------------------------------------------------------------------|
| Figure 36: Fisher scientific incubator                                                            |
| Figure 37: Applied Biosystems thermal cycler                                                      |
| Figure 38: UVP transilluminator system                                                            |
| Figure 39: BIO-RAD electrophoresis apparatus                                                      |
| Figure 40: SEM image of (group 2) with 800X magnification                                         |
| Figure 41: SEM image of (group 2) with 1500 X magnification                                       |
| Figure 42: EDX of (group 2) showing the main elements Si, O, and C                                |
| Figure 43: SEM image of (group 3) with 800X magnification                                         |
| Figure 44: SEM image of (group 3) with 1500X magnification                                        |
| Figure 45: EDX of (group 3) showing the main elements Si, O, C and Cl                             |
| Figure 46: SEM image of (group 4) with 800X magnification                                         |
| Figure 47: SEM image of (group 4) with 1500 X magnification                                       |
| Figure 48: EDX of (group 4) showing the main elements Si, O, C and Cl                             |
| Figure 49: FTIR spectrum for all the experimental groups                                          |
| Figure 50: XRD of all the experimental groups                                                     |
| Figure 51: Bar chart illustrating mean diametral tensile strength in different groups             |
| Figure 52: Bar chart illustrating mean compressive strength in different groups                   |
| Figure 53: Bar chart illustrating mean flexural strength in different groups                      |
| Figure 54: Bar chart illustrating mean water sorption in different groups                         |
| Figure 55: Bar chart illustrating mean solubility in different groups                             |
| Figure 56: Bar chart illustrating mean degree of conversion % in different groups                 |
| Figure 57: Bar chart illustrating mean dentine bond strength in different groups                  |
| Figure 58: Representative photograph for adhesive failure                                         |
| Figure 59: Representative photograph for cohesive failure                                         |
| Figure 60: Representative photograph for mixed failure                                            |
| Figure 61: Bar chart illustrating mean antibacterial effect against <i>Streptococcus mutans</i>   |
| in different groups at 0, 30, 60, 90 and 180 days                                                 |
| Figure 62: Line chart illustrating effect of time on mean antibacterial effect against            |
| Streptococcus mutans in different groups                                                          |
| Figure 63: Control groups of the BHI media showing no antibacterial activity                      |
| Figure 64: Plates of group 3 and 4 showing antibacterial activity against <i>Streptococcus</i>    |
| mutans at time 30 days                                                                            |
| mutans at time 180 days                                                                           |
| Figure 66: Images of the specimens at the start of the test and after 180 days showing            |
| dissolution and surface disintegration after being removed from BHI media                         |
| Figure 67: Bar chart illustrating mean antibacterial effect against <i>Lactobacillus casei</i> in |
| different groups at 0, 30, 60, 90 and 180 days                                                    |
| Figure 68: Line chart illustrating effect of time on mean antibacterial effect against            |
| Lactobacillus casei in different groups                                                           |
| Figure 70: Plates of group 3 and 4 showing antibacterial activity against <i>Lactobacillus</i>    |
| casei at time 30 days                                                                             |
| Figure 71: Plates of group 3 and 4 showing antibacterial activity against <i>Lactobacillus</i>    |
| casei at time 180 days                                                                            |

| Figure 72: Images of the specimens at the start of the test and after 180 days showing | 105 |
|----------------------------------------------------------------------------------------|-----|
| dissolution and surface disintegration after being removed from the MRS media          | 103 |
| Figure 73: Gel electrophoresis of Streptococcus mutans                                 | 106 |
| Figure 74: Gel electrophoresis of <i>Lactobacillus casei</i>                           | 106 |

#### List of Tables

|                                                                                                                                                                                  | Page     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Table I: Classification of resin composite based on type of resin composite, filler particle size and clinical use                                                               | 10       |
| Table II: Material, commercial name, manufacturer, and batch number of the commercially available materials used in the study                                                    | 22       |
| Table III: Chemical name, presentation, manufacturer, and batch number of chemicals used in preparation and testing in this study                                                | 22       |
| Table IV: Factorial design                                                                                                                                                       | 25       |
| Table (Va): Common IR assignments for BIS-GMA and TEGDMA                                                                                                                         | 72       |
| Table (Vb): Characteristic peaks of FTIR spectrum of Octenidine dihydrochloride                                                                                                  | 72       |
| Table (VIa): Descriptive statistics of diametral tensile strength and comparison between groups (ANOVA)                                                                          | 74       |
| Table (VIb): Detailed results of Tukey's post hoc test for comparison of diametral tensile strength                                                                              | 74       |
| Table (VIIa): Descriptive statistics of compressive strength and comparison between groups (ANOVA)                                                                               | . 76     |
| Table (VIIb): Detailed results of Tukey's post hoc test for comparison of compressive strength                                                                                   | 76       |
| Table (VIIIa): Descriptive statistics of flexural strength and comparison between groups (ANOVA)                                                                                 | . 78     |
| Table (VIIIb): Detailed results of Tukey's post hoc test for comparison of flexural strength                                                                                     | 78       |
| Table (IXa): Descriptive statistics of water sorption and comparison between groups (ANOVA)                                                                                      | . 80     |
| Table (IXb): Detailed results of Tukey's post hoc test for comparison of water sorption  Table (Xa): Descriptive statistics of solubility and comparison between groups  (ANOVA) | 80<br>82 |
| Table (Xb): Detailed results of Tukey's post hoc test for comparison of solubility                                                                                               | 82       |
| Table (XIa): Descriptive statistics of degree of conversion % and comparison between groups (ANOVA)                                                                              | 84       |
| Table (XIb): Detailed results of Tukey's post hoc test for comparison of degree of conversion %                                                                                  | 84       |
| Table (XIIa): Descriptive statistics of resin-dentin shear bond strength and comparison between groups (ANOVA)                                                                   | 86       |
| Table (XIIb): Detailed results of Tukey's post hoc test for comparison of resin-dentin shear bond strength                                                                       | 86       |
| Table (XIIIa): Distribution of failure modes within each group after the shear test                                                                                              | 88       |
| Table (XIIIb): Percentage of mode of bond failure found in each group after the shear test                                                                                       | 88       |
| Table (XIVa): Descriptive statistics of antibacterial effect against Streptococcus mutans and comparison between groups (ANOVA)                                                  | 91       |
| Table (XIVb): Detailed results of Tukey's post hoc test for comparison of antibacterial effect against Streptococcus mutans at 30 and 60 days                                    | 92       |

| Table (XIVc): Detailed results of Tukey's post hoc test for comparison of antibacterial   | 93  |
|-------------------------------------------------------------------------------------------|-----|
| effect against Streptococcus mutans at 90 and 180 days                                    | 93  |
| Table (XV): Effect of time on antibacterial effect against Streptococcus mutans within    | 94  |
| the same group (Repeated measures ANOVA)                                                  | 94  |
| Table (XVIa): Descriptive statistics of antibacterial effect against Lactobacillus casei  | 99  |
| and comparison between groups (ANOVA)                                                     | 99  |
| Table (XVIb): Detailed results of Tukey's post hoc test for comparison of antibacterial   | 99  |
| effect against lactobacilli at 30 and 60 days                                             | 99  |
| Table (XVIc): Detailed results of Tukey's post hoc test for comparison of antibacterial   | 101 |
| effect against lactobacilli at 90 and 180 days                                            | 101 |
| Table (XVII): Effect of time on antibacterial effect against Lactobacilli within the same | 102 |
| group (Repeated measures ANOVA).                                                          | 102 |

#### Introduction

Dental caries is a very common localized and transmissible pathological infectious disease that results in the destruction of hard dental tissues <sup>(1)</sup>. The different treatment modalities of dental caries include the removal of decayed dental tissues and restoring them with various types of dental restorations, such as dental amalgam, resin composites, ceramics, and gold.

The scientific developments and advances in restorative dental materials, have made resin composites one of the most commonly used materials worldwide for different classes of restorations. Owing to its ability to bind readily to the tooth structure with adhesives, and most importantly having a greater range of shades that aid in close matching to the natural teeth allowing the restoration to look imperceptible <sup>(2)</sup>.

Resin composite restorations are characterized by a high compressive strength relative to most of the other restorative materials <sup>(3)</sup>. Properties of resin composites can be altered to suit a wider range of uses by modifying several factors such as the size of the filler particles, and the activation process. Depending on these properties, resin composites can be used in different parts of the oral cavity.

Flowable resin composites with improved mechanical and chemical characteristics have been widely used in the clinical practice. These resin composites are low-viscosity materials with a reduced amount of inorganic filler particles and a higher percentage of resinous components. Flowable resin composites with their low elastic modulus and minimal stress contraction, compete with stress development potentially helping in maintaining the marginal seal of the restorations. The flowable resin composites are readily workable and adaptable to cavity walls and their use can reduce marginal defects, cuspal deflections and polymerization shrinkage in restorations (4).