

بسم الله الرحمن الرحيم

-Call 4000

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعبدا عن الغبار

بالرسالة صفحات لم ترد بالأصل

Faculty of Engineering
Department of Architecture

BEYOND THE PHILOSOPHY OF BIOMIMICRY IN ARCHITECTURE: A MODEL TO SHIFT FROM THEORY TO PRACTICE

A thesis submitted as part of the requirements to obtain the degree of Doctor of Philosophy in Architectural Engineering

Presented by

Sara Samy Mahmoud Khalifa
M.Sc., Architecture
Faculty of Engineering, Ain Shams University, 2014

Supervisor Committee

Prof. Dr. Morad Abdelkader

Professor of Architecture & Environmental Control, Faculty of Engineering, Ain Shams University

Dr. Wafaa Nadim

Associate Professor, Faculty of Engineering and Material Science, Architecture and Urban Design Programme, German University in Cairo

March 2020

Ain Shams University Faculty of Engineering Department of Architecture Engineering

BEYOND THE PHILOSOPHY OF BIOMIMICRY IN ARCHITECTURE: A MODEL TO SHIFT FROM THEORY TO PRACTICE

A thesis submitted as part of the requirements to obtain the degree of Doctor of Philosophy in Architectural Engineering

Submitted by
Sara Samy Mahmoud Khalifa

Examiners Committee

Signature

Professor Dr. Abbas ElZafarany

Professor of Urban Design—Urban Design Department Faculty of Urban and Regional Planning- Cairo University

Professor Dr. Shaimaa Kamel

Professor of Architecture-Architecture Department Faculty of Engineering- Ain Shams University

Professor Dr. Morad Abdelkader

Professor of Architecture & Environmental Control Faculty of Engineering- Ain Shams University

Prof. Dr. Wafaa Nadim

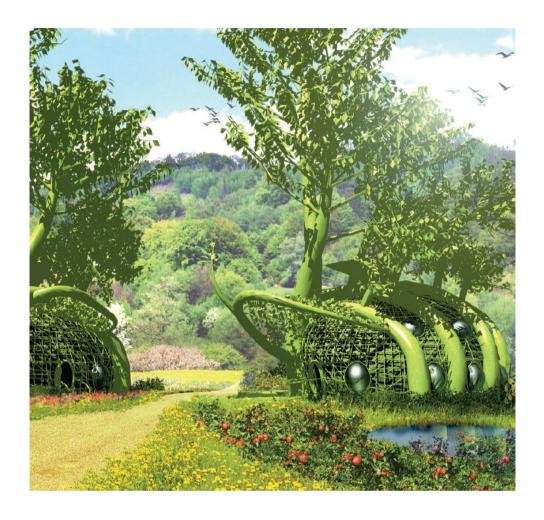
Associate Professor, Faculty of Engineering and Material Science, Architecture and Urban Design Programme, German University in Cairo

Thesis Defense Date: 22/3/2020

Graduate Studies:

Approval	:
----------	---

Date:/..../....


Approval of Faculty Council: Approval of University Council

Date:/.... Date:/....

بسم الله الرحمن الرحيم

"إِنَّ فِي خَلْقِ السَّمَاوَاتِ وَالْأَرْضِ وَاخْتِلَافِ اللَّيْلِ وَالنَّهَارِ لَآيَاتٍ لِّأُولِي الْأَلْبَابِ"

صدق الله العظيم

'From my designer's perspective, I ask: Why can't I design a building like a tree?

A building that makes oxygen, fixes nitrogen, sequesters carbon, distils water, builds soil, accrues solar energy as fuel, makes complex sugars and food, creates microclimates, changes colours with the seasons and self-replicates.

This is using nature as a model and a mentor, not as an inconvenience.

It's a delightful prospect...'

(McDonough and Braungart, 1998)

STATMENT

This thesis is submitted to Ain Shams University for the degree of Doctor of

Philosophy in Architecture.

The work included in this thesis was accomplished by the author at the

department of Architecture, Faculty of Engineering, Ain Shams University,

during the period from September 2015 to March 2020.

No part of this thesis has been submitted for a degree or a qualification at

any other university or institute.

Date: 22nd March 2020

Signature:

Name: Sara Samy Mahmoud Khalifa

M.Sc. of Architecture-2014

iν

ACKNOWLDGMENT

First, I thank god for achieving this important milestone in my life.

Second, I owe my gratitude to my supervisor Prof. Dr. Morad Abdelkader for the guidance and discussions, and for supporting my ideas from the very beginning till the last day.

Words cannot describe my gratitude to my promoter Prof. Dr. Wafaa Nadim for the valuable comments, inspiration, dedication, and delightful discussions throughout each step of the dissertation writing.

My sincere respect and appreciation to the examiners committee, Prof. Dr. Abbas el Zaafrany amd Prof. Dr. Shaimaa Kamel for their invaluable discussions and inspiring comments to improve my work.

Actually this work could not have been accomplished without the continuous assistance of my beloved mother Hanan Ahmed who always supported me and took care of my daughters in the hard times.

I would also like to thank my father Samy Khalifa who always believes in me and encourages me to achieve my goals.

No words can describe my love and gratitude to my beloved husband Ahmad Hamdy who is always believing in my abilities even more than I do and for always being by my side in the hard times. Without his encouragement and help this thesis would have never seen light.

I could not go through this hard and long journey without the existence of my lovely daughters Mariam and Malak in my life. They are always my source of happiness and joy to overcome any obstacles and continue strongly till the end. I dedicate this work to them both and I hope a great future for them.

Special thanks to my sisters Marwa and Rahma and my brother Abdulrahman for their love and support.

I would like to thank my friends Maha El Geweily, Aliaa Maged, Yasmina Sarhan, Shimaa Fayed, and Lina Fayed for their always support and motivations in all the stages of this research. Your advices and positive vibes through the hard times really inspired me and me stronger.

Special thanks to Dr. Abeer Mostafa for providing me with all love, support, and guidance.

Sara Samy March 2020

TABLE OF CONTENTS

STATE	EMENT.		iv
ACKN	OWLD	GMENT	v
LIST C	F FIGU	RES	xiii
LIST C	F TABL	ES	xvii
ABSTI	RACT		xviii
KEYW	ORDS		xix
INTRO	DDUCTI	ON	xx
1.	Prefac	e	xx
2.	Resea	rch Motivation	xxi
3.	Resea	rch Aim	xxiii
4.	Resea	rch Objectives	xxiii
5.	Resea	rch Method	xxiii
6.	Resea	rch Structure	xxiv
СНАР	TER 1 .	BIOMIMICRY BACKGROUND	1
1.1	Intr	oduction	1
1.2	Basi	c Definitions	2
1.3	Asp	ects of Biomimicry-based Architecture	3
1	.3.1	Biomimicry Principles	3
1	.3.2	Biomimicry Approaches	4
1	.3.3	Biomimicry Levels	5
1	.3.4	Building Systems of Biomimicry-based Architecture	6
1.4	Initi	atives of Incorporating Biomimicry into Architecture	7
1	.4.1	Biomimicry Theoretical Framework (BTF)	7

1.4.2	The Living Envelope Methodology (LEM)
1.4.3	Biomimetics Design Methodology (BDM)9
1.4.4	AskNature
1.4.5	Biomimicry Approach Model to Architectural Design (BAMAD) 11
1.4.6	Biomimicry Application Framework (BAF)
1.4.7	Design Spiral
	American National Standards Institute Integrative Process (ANSI IP©)
1.5 Ca	se Studies of Biomimicry-based Architecture17
1.5.1 Co., Ltd	Ministry of Municipal Affairs & Agriculture building, Aesthetics I., Doha, Qatar, 2008
1.5.2 1993	Waterloo Train Terminal, Grimshaw Architects, London, UK, 17
1.5.3 Archite	Hydrological Center for the University of Namibia, KSS cts, Namibia
1.5.4 Zimbab	Eastgate Building, Architects Pearce Partnership, Harare, we, 1996
1.5.5	Zira Island Masterplan, BIG Architects, Baku , Azerbaijan 21
1.5.6 Planne	Lioyd Crossing Project, Mithun Architects + Designers + rs, Portland, Oregon, USA, 2001
1.6 Th	e Proposed Framework24
1.7 Su	mmary 26
CHAPTER 2	DESIGN PROCESS MODEL28
2.1 Int	roduction28
2.2 De	sign Process Definitions

2.	3 A	spects of Design Process Models	30
	2.3.1	Design Process Principles	30
	2.3.2	Design Process Model Types	31
	2.3.3	Design Process Model Structures	33
2.	4 Ex	kamples of Design Process Models	34
2.	5 D	esign Process Modeling Techniques	39
2.5.1		IDEF0	39
	2.5.2	IDEFO Syntax	40
	2.5.3	IDEFO Diagrams	42
2.	6 Sı	ummary	44
СНА	PTER S	3. RESEARCH METHODOLGY	45
3.	1 In	troduction	45
3.	2 R	esearch Process	45
3.	3 R	esearch Method	46
	3.3.1	Research Type	47
	3.3.2	Methods of Data Collection	50
	3.3.3	Measurement of Data	52
	3.3.4	Research Population	53
	3.3.5	Sampling	54
3.	4 C	urrent Research Approach	56
	3.4.1	Context and Contribution to Knowledge	56
	3.4.2	Research Problem	57
	2 4 2	Decearch Aim and Objectives	F 7
	3.4.3	Research Aim and Objectives	57