

بسم الله الرحمن الرحيم

-Call 4000

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعبدا عن الغبار

بالرسالة صفحات لم ترد بالأصل

SEISMIC BEHAVIOR OF SKY STEEL BRIDGES CONNECTING ADJACENT BUILDINGS

Thesis Submitted to the Faculty of Engineering at Ain Shams University in Partial Fulfillment of the Requirements for the Degree of Master of Science in Structural Engineering

MINA REFAAT FARAH ESKANDER

SUPERVISED BY

Prof. Dr. Ahmed Hassan YoussefProfessor of Steel Structuresand Bridges
Faculty of Engineering
Ain Shams University

Prof. Dr. Osman Mohamed Osman Ramadan
Professor of Structural Analysis
Faculty of Engineering
Cairo University

Cairo 2020

SEISMIC BEHAVIOR OF SKY STEEL BRIDGES CONNECTING ADJACENT BUILDINGS

Thesis Submitted to the Faculty of Engineering at Ain Shams University in Partial Fulfillment of the Requirements for the Degree of Master of Science in Structural Engineering

MINA REFAAT FARAH ESKANDER

SUPERVISED BY

Prof. Dr. Ahmed Hassan YoussefProfessor of Steel Structures and Bridges
Faculty of Engineering
Ain Shams University

Prof. Dr. Osman Mohamed Osman Ramadan
Professor of Structural Analysis
Faculty of Engineering
Cairo University

Cairo 2020

SEISMIC BEHAVIOR OF SKY STEEL BRIDGES CONNECTING ADJACENT BUILDINGS

Thesis Submitted to the Faculty of Engineering at Ain Shams University in Partial Fulfillment of the Requirements for the Degree of Master of Science in Structural Engineering

MINA REFAAT FARAH ESKANDER

Approved by the Examining Committee

Name and Affiliation	Signature
1. Prof. Dr. Sherif Ahmed Mourad	
Professor of Steel Structures	
Faculty of Engineering, Cairo University	
2. Prof. Dr. Mohamed Nour Eldin Saad Fayed	
Professor of Structural Engineering	
Faculty of Engineering, Ain Shams University	
3. Prof. Dr. Ahmed Hassan Youssef	
Professor of Steel Structures and Bridges	
Faculty of Engineering, Ain Shams University	
4. Prof. Dr. Osman Mohamed Osman Ramadan	
Professor of Structural Analysis	
Faculty of Engineering, Cairo University	
Date: 23 / 11 / 2020	I

Engineer's Name: Mina Refaat Farah Eskander

Date of Birth : 25, September 1991

Nationality : Egyptian

E-mail : 13331@eng.asu.edu.eg

Phone : +201022727776

Address : Luxor, Egypt

Registration Date: 7/2015

Awarding Date:

Degree : Master of Science

Department : Structural Engineering

Supervisors : Prof. Dr. Ahmed Hassan Youssef

Prof. Dr. Osman Mohamed Osman Ramadan

Examiners: Prof. Dr. Sherif Ahmed Mourad

Prof. Dr. Mohamed Nour Eldin Saad Fayed

Prof. Dr. Ahmed Hassan Youssef

Prof. Dr. Osman Mohamed Osman Ramadan

Title of Thesis : Seismic behavior of sky steel bridges connecting adjacent buildings

Key Words : Sky-bridge - Adjacent buildings - Seismic excitation - Response spectrum

analysis - Parametric study

STATEMENT

This thesis is submitted to Ain Shams University for the degree of M.Sc. in Civil Engineering.

The work included in this thesis was carried out by the author at the Department of Structural Engineering, Faculty of Engineering, Ain Shams University, Cairo, Egypt.

No part of this thesis has been submitted for a degree or a qualification at any other University or Institution.

Name: Mina Refaat Farah Eskander

Signature:

Date: 23 / 11 / 2020

ACKNOWLEDGMENT

Gratitude is due to the merciful generous God that guided me throughout this study.

Thanks are due to *Prof. Dr. Ahmed Hassan Youssef*, Professor of Steel Structures, Faculty of Structural Engineering at Ain Shams University for his constant assistance and valuable advice throughout this study.

Gratitude is also extended to *Prof. Dr. Osman Mohamed Osman Ramadan*, Professor of Structural Analysis, Faculty of Structural Engineering at Cairo University, for his valuable supervision, continuous encouragement, useful suggestions, and active help during this investigation.

My sincere appreciation and gratitude are due to my family for their help and patience during the preparation of this study. Without their assistance, this investigation would have never ended.

Gratitude is to be extended to the staff members and colleagues who assisted me to accomplish my thesis.

ABSTRACT

Due to the limitation of land in the capitals with the increase of population, buildings are often built close to each other. In most cases, these buildings are separated without any structural connections or are connected only at the ground level. Accordingly, the seismic behavior of sky bridges linking two adjacent steel buildings is theoretically evaluated via numerous three-dimensional analyses. While the study focuses on the earthquake effects on internal forces induced in the bridge itself, the effects of the link presence on the global performance of the two buildings are also briefly addressed. About 300 three-dimensional models of the building and connecting bridge are developed and analysed using the response spectrum method. These models consider various controlling parameters such as bridge span, elevation, and end conditions; relative stiffness of the two buildings; as well as direction of ground motion excitation with respect to bridge axis. Results showed that the connections of the linking bridge have a significant effect on the overall dynamic response of the bridge in both longitudinal and transverse directions. Also, the linking bridge itself was found to be significantly affected, with varying of the buildings stiffness and it is direction of inertia.

Keywords: Sky-bridge - Adjacent buildings - Seismic excitation - Response spectrum analysis - Parametric study

TABLE OF CONTENTS

STATEMENT	5
ACKNOWLEDGMENT	6
ABSTRACT	
TABLE OF CONTENTS	
ABBREVIATIONS AND SYMBOLS	10
LIST OF FIGURES	12
LIST OF TABLES	14
CHAPTER (1): INTRODUCTION	17
1.1 THESIS OBJECTIVES	21
1.2 THESIS OUTLINE	21
CHAPTER (2): LITERATURE REVIEW	24
2.1 SKY BRIDGES WORLDWIDE PRACTICES	24
2.2 LITERATURE REVIEW OF SKY-BRIDGE	31
2.3 ENERGY DUE TO EARTHQUAKE	34
2.4 SEISMIC ANALYSIS	
2.5 IRREGULAR STRUCTURES	35
2.6 COMMENTS	36
CHAPTER (3): STRUCTURAL MODELS AND PARAMETRIC STUDY	39
3.1 DESIGNING TALL STRUCTURES LINKED BY SKY BRIDGES	
3.2 ADJACENT BUILDINGS	40
3.3 LATERAL FORCE-RESISTING SYSTEMS	41
3.4 PROCEDURE OF ANALYSIS	43
3.4.1 AVAILABLE ANALYTICAL METHODS	
3.4.2 IMPLEMENTED ANALYSIS TECHNIQUE AND HYPOTHESIS	45
3.5 IMPLEMENTED FINITE ELEMENT MODELING	
3.5.1 MODELED BUILDING DESCRIPTION	47
3.5.2 MODELED SKY-BRIDGE DESCRIPTION	47
3.5.3 MODELED MATERIAL PROPERTIES	
3.5.4 MODELED BOUNDARY CONDITIONS	48
3.5.5 MODELED LOADS	48
3.6 COMPARISION BETWEEN EQUIVALENT STATIC METHOD AND	
RESPONSE SPECTRUM METHOD	50
3.7 MODELED SKY BRIDGE PARAMETERS	
3.7.1 MODELED GENERAL PARAMETERS	51
3.7.2 MODELED BUILDING SHAPE	51
3.7.3 MODELED TYPES OF CONNECTIONS	
3.7.4 MODELED SPAN OF THE SKY BRIDGE	
3.7.5 MODELED SKY BRIDGE LEVEL	
3.8 CALCULATED LOADS AND FORCES BY CODE ECP- 201-2012	
3.8.1 CONSIDERED IMPORTANCE FACTOR	
3.8.2 CONSIDERED SEISMIC MASS	
3.8.3 CONSIDERED SOIL SITE CLASSIFICATION	
3.9 REMARKS	
CHAPTER (4): NUMERICAL RESULTS & STRUCTURAL ANALYSIS	
4.1 NUMERICAL PROCEDURE	
4 2 SIMIL ATION AND DESUITS OF CASE I	

4.2.1 EQx	64
4.2.2 EQy	66
4.2.3 COMPARISON OF FOUR SUBCASES FOR CASE I	68
4.3 SIMULATION AND RESULTS OF CASE II	70
4.3.1 EQx	70
4.3.2 EQy	
4.4 SIMULATION AND RESULTS OF CASE III	72
4.4.1 EQx	72
4.4.2 EQy	
4.5 SIMULATION AND RESULTS OF CASES IV AND V	74
4.5.1 SIMULATION AND RESULTS OF SUBCASE a	74
4.5.2 SIMULATION AND RESULTS OF SUBCASE b	78
4.5.3 SIMULATION AND RESULTS OF SUBCASE C	81
4.5.4 SIMULATION AND RESULTS OF SUBCASE d	84
4.6 COMMENTS	84
CHAPTER (5): EFFECT OF LINK ON COUPLED BUILDINGS	88
5.1 Introduction	
5.2 SIMULATING AND ANALYZING (WITHOUT SKY BRIDGE)	89
5.3 SIMULATING AND ANALYZING (CASE I)	90
5.3.1 SUBCASE a	90
5.3.2 SUBCASE d	91
5.4 SIMULATION AND ANALYSIS FOR UNEQUAL BUILDINGS	94
5.4.1 SUBCASE a	94
5.4.2 SUBCASE d	100
5.5. REMARKS	105
CHAPTER (6): CONCLUSIONS AND RECOMMENDATIONS	107
6.1 CONCLUSIONS	
6.2 RECOMMENDATIONS	109
LIST OF REFERENCES	110
APPENDIX A	116
ملخص البحث	120
مكونات الرسالة	

ABBREVIATIONS AND SYMBOLS

- F: Force of Inertia
- m: Mass of the structure
- a: Acceleration due to gravity
- S: Soil-factor
- γ: Response-factor
- T1: Building fundamental-period
- Ct: Coefficient related to the structural system and material
- Fy: Minimum yield-stress
- Fye: Effective yield-stress
- Fu: Minimum tensile-stress
- Fue: Effective tensile-stress
- V: Poisson-ratio
- A: Thermal expansion coefficient
- E: Elasticity Modulus
- G: Modulus of Shear
- A: Building with fixed dimensions
- B: Building with variable dimensions
- H: Building height above foundation level
- h: Sky-bridge level
- S: Sky-bridge span
- EQx: Earthquake in X-direction
- EQy: Earthquake in Y-direction
- MAF: Main girder maximum axial load
- MSF: Main girder maximum shear load
- Case I: Identical buildings
- Case II: longitudinal inertia of building B = 3 of building A
- Case III: Transverse inertia of building B = 3 of building A
- Case IV: Longitudinal inertia of building B = 5 of building A
- Case V: Transverse inertia of building B = 5 of building A
- Sub-case a: Connection between B and sky-bridge is a hinged