

# بسم الله الرحمن الرحيم



-C-02-50-2-





شبكة المعلومات الجامعية التوثيق الالكتروني والميكرونيلم





# جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

# قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات



يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار













بالرسالة صفحات لم ترد بالأصل





#### Thesis Title

## A Proposed Model to Minimize the Overall Makespan of Mixed-model Assembly Line in Automotive Industry in Egypt

(نموذج مقترح لتقليل الزمن الكلي للتصنيع في خطوط تجميع الموديلات المختلطة في قطاع صناعة السيارات في مصر)

Thesis Prepared by

Asmaa Saber Mohammed

Submitted to

Faculty of BusinessAin-Shams University

#### Supervised by

| Professor Dr/ Hussein |
|-----------------------|
| Sharara               |

Professor of Business Administration

Faculty of BusinessAin-Shams University

### Professor Dr/ Khaled Kadry

(Administrative supervisor)

Professor of Business and Dean of the faculty of Business Ain-Shams University

#### Dr/ Mona Sherif

Lecturer of Business Administration

Faculty of Business Ain-Shams University

#### **Title Page**

Student Name: Asmaa Saber Mohamed Ahmed

**Thesis Title**: A Proposed Model to Minimize the Overall Makespan of Mixed-model Assembly Line in Automotive Industry in Egypt

Academic Degree: Master Degree in Production Management

#### **Under Supervision of:**

- 1. Professor Dr/ Khaled Kadry (Administrative supervisor). Professor of Business and Dean of the faculty of Business Ain-Shams University
- 2. Professor Dr/ Hussein Sharara. Professor of Business Administration. Faculty of Business Ain-Shams University
- 3. Dr/ Mona Sherif. Lecturer of Business Administration. Faculty of Business Ain-Shams University

**Certification Year: 2021** 

#### **Approval Sheet**

Student Name: Asmaa Saber Mohamed Ahmed

**Thesis Title**: A Proposed Model to Minimize the Overall Makespan of Mixed-model Assembly Line in Automotive Industry in Egypt

Academic Degree: Master Degree in Production Management

#### **Examination Committee:**

- 1. Prof. Sayed Elkholy, Professor of Business, faculty of Business Ain-Shams University
- 2. Prof. Khaled Kadry, Professor of Business and Dean of the faculty of Business Ain-Shams University
- 3. Prof. Rania Shmaa, Professor of Business and Dean of the faculty of Business Suez University

**Date of the Defense:** September 19<sup>th</sup>, 2021

**Approved by Faculty Council in:** 

**Approved by University Council in:** 

#### Acknowledgment

A large measure of gratitude goes to the following persons who contributed to the preparations for this paper through their help and provisions of vital information:

Professor HusseinSharara, research supervisor, who provided great help in building the model and analyzing the available data in order to get the best of it.

Professor Khaled Kadry, administrative supervisor, who provided guidance and help in reviewing the thesis content.

Doctor Mona Sherif, research supervisor, who helped in reviewing the research and gave its guidance and support.

Doctor Mohammed Al-Masry, my boss at work who was supportive and helped me in different steps of my research work in general.

And special thanks to every member of the discussion board; Professor Sayed AlKholy and Professor Rania Shamaa.

#### Abstract

The current study states that workforce scheduling in automotive industry is affected by multiple factors, one of the main factors is the overall makespan of assembly lines which needs to be minimized.

Time minimization is affected by some constraints, such as workers number, workforce type, workstation type, cycle time of model, number of station, total number of jobs in the assembly line, and number of models.

This makes the current research targets to achieve certain objectives, such as optimize vehicle manufacturers in Egypt performance in terms of production costs and faces the forces of the current highly competitive marketplace, and help managers in these companies to prepare different versions of assignment schedules with different production cycles.

The current research is important for the automotive industry sector because mass production system in manufacturing sector requires repetitive production work patterns which implies the necessity of arranging for flexible workers schedules.

The research follows linear programming to create a system of equation for solving time minimization problem in three phases, each deals with real life parameters taken from one of Egyptian vehicles manufacturers, Prima Plant. Final results show successful time minimization.

### **Table of Contents**

| Title                                                            | Page Number |
|------------------------------------------------------------------|-------------|
| Cover Page                                                       | I           |
| Title Page                                                       | II          |
| Approval Sheet                                                   | III         |
| Acknowledgment                                                   | IV          |
| Abstract                                                         | V           |
| Table of Contents                                                | VI          |
| Dedication                                                       | XI          |
| Chapter I: Theoretical Framework and Literature Review           | 2           |
| 1.1 Abstract and Overview                                        | 2           |
| 1.2 Keywords and Abbreviations                                   | 6           |
| 1.3 Research Problem                                             | 7           |
| 1.4 Illustrative Real-Life Case (Volkswagen Autoeuropa Portugal) | 12          |
| 1.5 Illustrative Example of Model Application                    | 15          |
| 1.6 Analysis of Model Feasibility                                | 17          |
| 1.7 Research Objectives                                          | 18          |
| 1.8 Research Importance                                          | 19          |
| 1.9 Research Hypotheses                                          | 19          |
| 1.10 Research Methodology                                        | 21          |
| 1.11 Literature Review                                           | 22          |
| 1.11.1Arabic Studies                                             | 23          |
| 1.11.2Foreign Studies                                            | 24          |

| 1.12  | Thesis Limitations                                   | 52 |
|-------|------------------------------------------------------|----|
| 1.13  | Thesis Outline                                       | 52 |
| 1.14  | Chapter Summary                                      | 53 |
| Chap  | ter II: Theoretical Representation                   | 55 |
| 2.1   | Introduction                                         | 55 |
| 2.2   | Assembly Lines Overview                              | 56 |
| 2.2.1 | Types of Assembly Systems                            | 56 |
| 2.2.2 | Assembly Planning for Mixed-car model Assembly Lines | 57 |
| 2.2.3 | Description of Vehicle Assembly Line                 | 58 |
| 2.2.4 | Resources Handling System in Assembly Lines          | 59 |
| 2.2.5 | The Resource Planning for Assembly Lines             | 60 |
| 2.2.6 | Assembly Complexity Assessment                       | 60 |
| 2.3   | Material Handling System                             | 60 |
| 2.3.1 | The Resource Planning for Assembly Lines             | 60 |
| 2.3.2 | Dealing with Mixed-car model Assembly Line           | 61 |
| 2.4   | Classification of Assembly Operations and Systems    | 62 |
| 2.4.1 | Measuring Effectiveness of Assembly Systems          | 63 |
| 2.4.2 | Product Design for Assembly                          | 64 |
| 2.5   | The Planning of an Assembly System                   | 64 |
| 2.5.1 | Analysis of Assembly Tasks                           | 66 |
| 2.5.2 | Selection of System Principles                       | 69 |
| 2.5.3 | Assembly Organization                                | 69 |
| 2.5.4 | Inter-linkage of Assembly Stations                   | 70 |
| 2.6   | Flexible Assembly Systems with Assembly Robots       | 71 |
| 2.7   | Assembly Line Balancing                              | 72 |
| 2.8   | Assembly Systems in Automotive Industry              | 74 |

| 28.1 Makespan Analysis Techniques Applied in Automotive                                          | 76 |
|--------------------------------------------------------------------------------------------------|----|
| Industry                                                                                         |    |
| 2.8.2 Activity Level and Labor Efficiency                                                        | 77 |
| 2.9 Manpower Planning                                                                            | 78 |
| 2.9.1 Indirect Labor Requirements                                                                | 78 |
| 2.9.2 Operative Plan and Staff Balancing                                                         | 79 |
| 2.9.3 Labor Productivity and Improvement Plans                                                   | 79 |
| 2.9.4 Assignment of Tasks and Workload Balance                                                   | 80 |
| 2.10 Taxonomy of Assembly Line Systems                                                           | 80 |
| 2.10.1 Mixed-car model Assembly Lines Characteristics                                            | 82 |
| 2.10.2 Sequencing Method for the Mixed-car model Assembly Lines                                  | 83 |
| 2.10.3 Mixed-car model Assembly Line Balancing                                                   | 83 |
| 2.10.4 Workstation Formation for Group of Workers                                                | 84 |
| 2.10.5 Advantages of the Application of Mixed-car model Assembly Lines                           | 84 |
| 2.10.6 Application of Mixed-car model Assembly Lines in Automotive Industry                      | 85 |
| 2.11 Car Sequencing Problem                                                                      | 86 |
| 2.11.1Application of Linear Programming in Mixed-car model Assembly Lines of Automotive Industry | 86 |
| 2.11.2 Theory and Application of Linear Program                                                  | 87 |
| 2.12 Chapter Summary                                                                             | 87 |
| Chapter III: Proposed Mathematical Model to Reduce Makespan                                      | 90 |
| 3.1 Summary of the Visit                                                                         | 90 |
| 3.2 Phase I of the Model                                                                         | 91 |
| 3.2.1 Model Notation                                                                             | 92 |
| 3.2.2 Objective Function                                                                         | 92 |

| 3.2.3 Model application                                   | 92  |
|-----------------------------------------------------------|-----|
| 3.2.4 Graphical Representation                            | 94  |
| 3.2.5 Results                                             | 94  |
| 3.2.6 Analyzing results                                   | 97  |
| 3.3 Phase II of the Model                                 | 98  |
| 3.3.1 Objective                                           | 98  |
| 3.3.2 New Planning Horizon                                | 99  |
| 3.4 Phase III of the Model                                | 100 |
| 3.4.1 Objective                                           | 100 |
| 3.4.2 Model Notation                                      | 100 |
| 3.4.3 Objective Function                                  | 100 |
| 3.4.4 Model application                                   | 101 |
| 3.4.5 Graphical Representation                            | 103 |
| 3.4.6 Results                                             | 103 |
| 3.4.7 Analyzing results                                   | 106 |
| 3.5 Sensitivity Analysis                                  | 106 |
| 3.5.1 Parameters Modification                             | 107 |
| 3.5.2 Results of Applying Sensitivity Analysis Iterations | 109 |
| 3.5.3 Sensitivity Analysis Results Summary                | 110 |
| 3.6 Chapter Summary                                       | 111 |
| Chapter IV: Results Analysis and Recommendations          | 114 |
| 4.1 Introduction                                          | 114 |
| 4.2 Results Analysis                                      | 114 |
| 4.2.1 Phase I Results Analysis                            | 114 |
| 4.2.1.1 Graphical Analysis of Phase I                     | 114 |
| 4.2.1.2 Numerical Analysis of Phase I                     | 117 |

| 4.2.2 Phase II Results Analysis                | 117 |
|------------------------------------------------|-----|
| 4.2.3 Phase III Results Analysis               | 117 |
| 4.2.3.1 Graphical Analysis of Phase III        | 117 |
| 4.2.3.2 Numerical Analysis of Phase III        | 121 |
| 4.2.3.3 Results of Testing Research Hypotheses | 122 |
| 4.3 Research Recommendations                   | 123 |
| 4.4 Action Plan                                | 124 |
| English Summary                                | 127 |
| Arabic Summary                                 | 135 |
| Appendices                                     | 145 |
| References                                     | 151 |