

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Ain Shams University Faculty of Engineering Structural Engineering Department

Behavior of Deep Beams using Different Concrete Grades

Thesis

Submitted in Partial Fulfillment of the Requirements for the Degree of

Master of Science

in

Civil Engineering (Structures)

by

Noha Ahmed Metwally Ahmed

Supervised by

Prof. Dr. Ayman Hussein Hosny Khalil

Professor of Reinforced Concrete Structures Ain Shams University

Dr. Ezz Elden Moustafa

Assistant Professor, Structures Engineering Dept.
Ain Shams University

Ain Shams University Cairo-2021

Ain Shams University
Faculty of Engineering
Department of Structural Engineering

Behavior of Deep Beam using Different Concrete Grades

By

Noha Ahmed Metwally Ahmed

B.Sc. (2008)
Civil Engineering Department
Faculty of Engineering, Ain Shams University
Cairo- Egypt

EXAMINERS COMMITTEE

	<u>Signature</u>
Prof. Dr. Mohamed Elsaeed Essa	
Professor of Reinforced Concrete Structures	
Faculty of Engineering - Cairo University	
Prof. Amr Hussein Abdel Azim Zaher	
Professor of Reinforced Concrete Structures	
Faculty of Engineering - Ain Shams University	
Prof. Ayman Hussein Hosny Khalil	
Professor of Reinforced Concrete Structures	
Faculty of Engineering - Ain Shams University	

Date: Oct. 2021

STATEMENT

This thesis is submitted to Ain Shams University, Cairo, Egypt, as a

partial fulfillment of the requirements for the degree of Master of Science

(M.Sc.) in Civil Engineering (Structural), Faculty of Engineering, Ain

Shams University.

The experimental and numerical works included in this thesis was carried

out by the Author at Ain Shams University, Facility of Engineering,

Reinforced Concrete Laboratory, Cairo, Egypt. No part of this thesis has

been submitted for a degree or qualification at any other university or

institute.

Name: Noha Ahmed Metwally Ahmed

Signature: Moha Ahmed

Date: Oct. 2021

ii

RESEARCHERER DATA

Name : Noha Ahmed Metwally Ahmed

Date of birth : 19 January 1986

Place of birth : Cairo, Egypt

Academic Degree : B.Sc. in Structural Engineering

University : Ain Shams University

Date : 2008

Current job : Senior team leader structural engineer

ABSTRACT

The deep beam is a beam having a small shear span depth ratio. Because of the geometry of deep beams, their behavior is different from slender beams. Deep beams have many applications for both residential and commercial building structures such as transfer girders, transfer caps of high-rise buildings and as part of a lateral load resisting system (Outriggers)...etc. The use of deep beams has increased rapidly because of their convenience and economic efficiency.

The current research program presents both experimental and numerical studies to investigate the behavior of simply supported deep beams having layers of concrete of different grades (25 MPa and 50 MPa) subjected to vertical loads such as (Cracking-deflection-ultimate loads). All deep beams were exposed to vertical concentrated load at mid-span up to failure. All specimens were fabricated and tested in the Laboratory of Reinforcement Concrete of Faculty of Engineering, Ain Shams University. An experimental program is carried out using five simply supported deep beams with the same dimensions; specimens with an effective span of 1100 mm, width of 200 mm and a height of 1000 mm, specimens also share same top, bottom, vertical, and horizontal reinforcement. Five numerical models were developed using a non linear finite-element analysis software (ABAQUS 2017), all models were verified against the experimental results and showed good agreement with the test data. The finite element analysis was extended to investigate another parameters:

Effect of load locations (at mid span and quarter span) and type of loads (concentrated and uniform).

Both the experimental and numerical studies showed that failure of tested deep beams was mainly due to diagonal cracks. Changing compressive strength of concrete from 25 MPa to 50 MPa results in less deflection, higher value of cracking load and a higher to failure load. Casting concrete on different layers causes the first cracks appear at earlier load than in beam with one grade of concrete. It was also found that the best flexural behavior of deep beams is obtained when the bottom layer is casted using high concrete compressive strength and gives results (deflection, and failure load) close to results of deep beam casted with high compressive strength. Also it was observed that the position of the applied vertical load at quarter span compared at mid span leads to decreases in the ultimate capacity of deep beam and finally the deep beam which is subjected to a distributed vertical load has a higher ultimate vertical load capacity compared to the deep beam which is subjected to concentrated vertical load.

<u>Keywords:</u> Deep beams, Cracking pattern, Deflection, Experimental study, High compressive strength (HCS), Normal compressive strength (NCS).

ACKNOWLEDGMENTS

First of all, I would like to express my great thanks to **Allah**, who gave me the strength, ability, and conciliation to achieve this work.

Then I would like to record and express my sincerest gratitude and appreciation to my advisor, **Prof. Dr. Ayman Hussein Hosny**. I will fondly remember the hours upon hours of conversations with him discussing in deep beam reinforced concrete, and many other technical topics.

I would also like to extend sincere thanks to my advisors, **Dr. Ezz Elden Mahmoud** for his guidance, expert instruction, and the investments he has made in me throughout the research duration, allowing me to be involved in such interesting research.

Many people supported me in ways beyond what I could have asked for during the completion of this thesis. I would like to thank Dr. Ahmed Hassan for his support and cooperation with me to complete the experimental program.

Most importantly, I would like to thank my Mum Fatma Ali, her unwavering love and support significantly contributed to my success throughout the completion of this thesis. I lovingly dedicate this to her. Also, I would not be where I am today if it weren't for the support and love of my sisters Hanan Ahmed and Rasha Ahmed, thank you for always helping me be my best.

TABLE OF CONTENT

STATEME	NT	II
RESEARC	HERER DATA	III
ABSTRAC	Т	IV
ACKNOW]	LEDGMENTS	VI
CHAPRER	(1) INTRODUCTION	1
	ieral	
	ECTIVES AND SCOPE	
	SIS OUTLINES	
CHAPRER	(2) LITERATURE REVIEW	4
2.1 Inte	RODUCTION	4
2.2 Dee	P BEAM BEHAVIOR	4
2.3 STR	UT AND TIE METHOD	5
2.3.1	Elements of a Strut and Tie Model	9
2.3.2	Modes of failure	9
2.3.3	Configurations for Strut and Tie Models	10
2.3.4	Selection of Strut and Tie Model for practical analysis	s11
2.4 Effi	ECT OF CONCRETE STRENGTH ON DEEP BEAM BEHAVIOR	12
2.4.1	Experimental investigation (Previous studies on Deep	beams)
		12
2.5 Cod	DES' SHEAR STRENGTH CALCULATION PROCEDURE FOR DI	EEP
BEAMS		19
2.5.1	Egyptian Code ECP 203-2020 [9]	19
2.5.2	American Concrete Institute (ACI 318-19) [10]	24
2.5.3	CIRIA Guide [25]	27
CHAPRER	(3) EXPERIMENTAL PROGRAM	30
3.1 Inte	RODUCTION	30
3.2 MA	TERIAL PROPERTIES	30
3.2.1	Concrete	30
3.2.2	Reinforcement rebars	31
3 3 SDE	CIMENS' CONFIGURATION	31

3.4 Spec	CIMENS' PARAMETERS	33
3.5 For	MWORK	36
3.6 FAB	RICATION OF TEST SPECIMENS	36
3.7 TEST	Γ SETUP AND LOADING PROGRAM	38
3.8 Inst	RUMENTATION	39
3.8.1	Load Cell	39
3.8.2	LVDT's	39
3.8.3	Strain Gauges	40
3.8.4	Data Acquisition	41
CHAPRER	(4) ANALYSIS AND DISCUSSION OF EXPERIMENTA	ΔL
	RODUCTION	
	CK PROPAGATION AND FAILURE MODE	
4.2.1	Specimen (B1)	
4.2.2	Specimen (B2)	
4.2.3	Specimen(B3)	
4.2.4	Specimen (B4)	
4.2.5	Specimen (B5)	
4.2.6	Summary of experimental test result	
	D DEFLECTION BEHAVIOR FOR TESTED SPECIMENS	
4.3.1	Load deflection behavior for specimen (B1)	
4.3.2	Load deflection behavior for specimen (B2)	
4.3.3	Load deflection behavior for specimen (B3)	
4.3.4	Load deflection behavior for specimen (B4)	
4.3.5	Load deflection behavior for specimen (B5)	
	EL STRAIN BEHAVIOR FOR TESTED SPECIMENS	33
4.4.1	Steel Strain behavior in tension reinforcement for tested	<i></i>
-	nens	
	Steel strain behavior in side bar for tested specimens	59
	Steel strain behavior in stirrups near supports for tested	60
specim	nens	62
CHAPRER	(5) THEORETICAL INVESTIGATION	66
5.1 Inte	RODUCTION:	66
	TE ELEMENT MODEL	
	ΓERIAL MODEL	

5.3.1	Steel modelling	70
5.3.2	Concrete modelling	71
5.4 Con	ISTRAINTS	74
5.4.1	Contact between concrete and steel reinforcement	74
5.4.2	Contact between layers of concrete	75
5.4.3	Contact between deep beam and steel support	76
5.4.4	Contact between deep beam and loading plate	76
5.5 Loa	DING AND BOUNDARY CONDITIONS	77
5.5.1	Applied loads	77
5.5.2	Support modelling	78
5.6 VAL	IDATION OF FINITE ELEMENTS MODEL	78
5.6.1	Introduction	78
5.6.2	Load-deflection behavior	79
5.6.3	Failure Modes	84
5.6.4	Steel strain behavior	88
5.6.5	Model validity	91
5.7 PAR	AMETRIC STUDY	91
5.7.1	Load deflection behavior	92
5.7.2	Steel strain behavior	96
CHAPRER	(6) SUMMARY, CONCLUSION AND	
	ENDATIONS	99
	IMARY	
	ICLUSIONS	
	OMMENDATIONS:	
REFEREN	CES	101
APPENDIX	X (A)	104
A.1 Com	PARISON BETWEEN EXPERIMENTAL FAILURE LOAD, STM	
	LOAD AND EGYPTIAN CODE FAILURE LOAD	105
LIST OF F	TIGURES	
Figure 2. 1-	Deep beams carrying concentrated loads [19]	5
Figure 2. 2	– Description of strut and tie model [9]	6
\sim	L J	

Figure 2. 3– (a) Direct strut and tie model, (b) indirect strut and tie mod	lel
and (c) combined strut and tie model [20]	10
Figure 2. 4– Direct Strut and Tie Model [20]	11
Figure 2. 5- Critical section in shear design [7]	19
Figure 2. 6- Strut and Tie Model for deep beam [8]	23
Figure 2. 7- Notation for the Ciria guide Code method [24]	27
Figure 3. 1 - Specimen dimensions	32
Figure 3. 2 - Reinforcement details of tested specimens	32
Figure 3. 3 – Specimen dimensions and compressive strength for specime	en
(B1)	33
Figure 3. 4 - Specimen dimensions and compressive strength for specime	en
(B2)	33
Figure 3. 5 - Specimen dimensions and compressive strength for specime	en
(B3)	34
Figure 3. 6 - Specimen dimensions and compressive strength for specime	en
(B4)	34
Figure 3. 7 - Specimen dimensions and compressive strength for specime	en
(B5)	35
Figure 3. 8 - Preparation of formwork	36
Figure 3. 9 - Placement of reinforcement	37
Figure 3. 10 - Specimens after removing formwork	37
Figure 3. 11 - Test and loading setup for tested specimens	38
Figure 3. 12 - Location of LVDT in the specimen	39
Figure 3. 13 - Locations of the steel strain gauges in all specimens	40
Figure 4. 1 - Cracks pattern for Specimen (B1)	43
Figure 4. 2 – Failure mode for Specimen (B1)	43

Figure 4. 3 – Crack pattern at maximum load cell for Specimen (B2)44
Figure 4. 4 - Crack pattern for Specimen (B3)45
Figure 4. 5 - Failure mode for Specimen (B3)45
Figure 4. 6 - Crack pattern for specimen (B4)47
Figure 4. 7 - Failure mode for specimen (B4)47
Figure 4. 8 - Crack pattern for specimen (B5)48
Figure 4. 9 - Failure mode for specimen (B5)49
Figure 4. 10 – Displacement – Ductility ratio
Figure 4. 11 – Load – deflection behavior for specimen (B1)52
Figure 4. 12 - Load – deflection behavior for specimen (B2)53
Figure 4. 13 - Load – deflection behavior for specimen (B3)53
Figure 4. 14 - Load – deflection behavior for specimen (B4)54
Figure 4. 15 - Load – deflection behavior for specimen (B5)54
Figure 4. 16 - Load – deflection behavior for all tested specimens55
Figure 4. 17 – Load versus tension steel strain for specimen (B1)56
Figure 4. 18 - Load versus tension steel strain for specimen (B2)56
Figure 4. 19 - Load versus tension steel strain for specimen (B3)57
Figure 4. 20 - Load versus tension steel strain for specimen (B4)57
Figure 4. 21 - Load versus tension steel strain for specimen (B5)58
Figure 4. 22 - Load versus tension steel strain for all tested specimens58
Figure 4. 23 - Load versus steel strain at middle side bar for specimen (B1)
59
Figure 4. 24 - Load versus steel strain at middle side bar for specimen (B2)
60
Figure 4. 25 - Load versus steel strain at middle side bar for specimen (B3)
60
Figure 4. 26 - Load versus steel strain at middle side bar for specimen (B4)
61