

بسم الله الرحمن الرحيم

-C-02-50-2-

شبكة المعلومات الجامعية التوثيق الالكتروني والميكرونيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

بالرسالة صفحات لم ترد بالأصل

Neurotransmitters Disorders and Oxidative Stress in Workers Exposed To brick kiln Pollutants in Egypt.

Submitted By

Tamer Madboly Abdel-Magid

B.Sc. of Science (Chemistry). Faculty of science. Helwan University. 1997

Master in Environmental Science. Faculty of Graduated Studies and Environmental Research. Ain Shams University. 2015

A Thesis Submitted in Partial Fulfillment

Of

The Requirement for the Doctor of Philosophy Degree

In

Environmental Science

Department of Environmental Basic Science
Faculty of Graduated Studies and Environmental Research
Ain Shams University

APPROVAL SHEET

Neurotransmitters Disorders and Oxidative Stress in Workers Exposed To brick kiln Pollutants in Egypt.

Submitted By

Tamer Madboly Abdel-Magid

B.Sc. of Science (Chemistry). Faculty of science. Helwan University. 1997

Master in Environmental Science. Faculty of Graduated Studies and Environmental Research. Ain Shams University. 2015

A Thesis Submitted in Partial Fulfillment

Of

The Requirement for the Doctor of Philosophy Degree
In Environmental Science
Department of Environmental Basic Science

This thesis was discussed and approved by:

The Committee Signature

1- Prof.Dr. Magdy Mahmoud Hassan

Professor of Biochemistry Faculty of Science, Ain Shams University

2-Prof.Dr.Menha Mahmoud Sweilem

Professor of Biochemistry & Genetic Engineering National Research Center

3-Prof.Dr.Mona Al-Qutb Mousi

Professor of forensic and clinical toxicology Faculty of Medicine, Ain Shams University

Neurotransmitters Disorders and Oxidative Stress in Workers Exposed To brick kiln Pollutants in Egypt.

Submitted By

Tamer Madboly Abdel-Magid

B.Sc. of Science (Chemistry). Faculty of science. Helwan University. 1997

Master in Environmental Science. Faculty of Graduated Studies and Environmental Research. Ain Shams University. 2015

A Thesis Submitted in Partial Fulfillment

Of

The Requirement for the Doctor of Philosophy Degree
In Environmental Science
Department of Environmental Basic Science

Under the supervision of:

1- Prof.Dr. Magdy Mahmoud Hassan

Professor of Biochemistry Faculty of Science, Ain Shams University

2- Dr. Mahmoud Badr Abd Elwahab

Assistant consultant of Biochemistry, Ain Shams University Hospitals

3-Dr. Eman Abdel-Fatah mohamed

Professor Assistant of forensic and clinical toxicology Faculty of Medicine, Ain Shams University

Contents

•	List of abbreviations	1	
•	List of Tables	III	
•			
•			
•			
•	Introduction		
•	Aim of the work	2	
•	Review of literature	4	
	 History 	4	
	o Raw Materials	7	
	 Environmental and occupational Pollutants in Brick Kilns 	9	
	 Free Radical and Oxidative stress 	14	
	 Reactive Oxygen Species (ROS) 	16	
	 Reactive Nitrogen Species (RNS) 	16	
	 Formation of reactive oxygen species(ROS) 	16	
	Nitric Oxide(NO)	18	
	 Malondialdehyde (MDA) 	19	
	 Heavy metals 	20	
	 Heavy metals and their toxicity mechanisms 	20	
	o Lead (Pb)	22	
	o Cadmium (Cd)	27	
	o Chromium (Cr)	29	
	 Neurotransmitters 	36	
	 Acetylcholine and acetylcholinesterase 	37	
	 Serum neuron-specific enolase (NSE) 	42	

Contents	
 Serum Alpha-1-antitrypsin 	44
Methodology	48
Results	83
Discussion	124
Conclusion and Recommendation	141
Summery	145
References	150
Arabic Summery	185

List of Abbreviations

A1AT Alpha-1 antitrypsin

ABG Arterial blood gas

ACh Acetylcholine

AST Aspartate amino transferase

BC Before Christ

BMI Body Mass Index

BNP Brain natriuretic peptide

BUN Blood Urea Nitrogen Cd Cadmium

Cr Chromium

cGMP Cyclic guanosine monophosphate

CO Carbon monoxide COHb Carboxyhemoglobin

CNS Central Nervous System

DNS Delayed neuropsychiatric sequelae

ECG Electrocardiogram

EDCs Endocrine disrupting chemicals
GGT gamma-glutamyl transferase

HB hemoglobin HCT Haematocrit

HIV Human immunodeficiency virus

HF Heart failure

HO Hemeoxygenase LOC loss of conscious

MCH Mean corpuscular hemoglobin MCHC Mean corpuscular hemoglobin

MDA Malondialdehyde mEq/L milliequivalent/Litre

List of Abbreviations

mg milligram

mg/dl milligram/deciliter mmHg millimeter mercury

NEQS National Environmental Quality

Standards

NO Nitric oxide

NOS Nitric oxide synthetase NSE Neuron specific enolase

Pb Lead

PLTs Platelet count

Pss Poisoning severity score

PM Particulate Matter

PChE Pseudo cholinesterase
RBCs Red blood cells Count
ROS Reactive oxygen species

SD Standard deviation

SGOT glutamic oxaloacetic transaminase

TAC Total Antioxidant Capacity
WBCs White blood cells Count
WHO World Health Organization

List of Table

Table	Table Title	
Table (1)	Chemical Composition of clay	8
Table (2)	Fuel types and respective pollutant emissions	12
Table (3)	Age, BMI and Exposure time per day in brick kiln	85
	workers studied groups and control group	
Table (4)	Blood pH in the studied groups	86
Table (5)	PCO ₂ in the studied groups	87
Table (6)	PO ₂ in the studied groups	89
Table (7)	AST, ALT and GGT in the studied groups	91
Table (8)	Creatinine and Blood Urea in the studied groups	93
Table (9)	Alpha-1-Antitrypsin Level in studied groups	94
Table (10)	Oxidative stress parameters (MDA, NO, TAC) in	97
	studied groups	
Table (11)	Heavy Metals (Pb, Cd, Cr) in studied groups	99
Table (12)	Neurotransmitters Parameters (Ach, NSE, PChE) in	102
	studied groups	
Table (13)	Hematological Parameters in studied groups	108
Table (14)	Correlation between heavy metals and	109
	neurotransmitters Parameters	
Table (15)	Correlation between heavy metals and Oxidative	113
	Stress parameters	
Table (16)	Correlation between neurotransmitters and Oxidative	116
	Stress parameters	
Table (17)	Correlation between heavy metals and arterial blood	121
	gases parameters	
Table (18)	Correlation between heavy metals and Body Mass	122
	Index (BMI)	

List of Figures

Figure	Title	Page
Figure (1)	Formation of reactive oxygen species	18
Figure (2)	Various sources of lead pollution in the	23
	environment	
Figure (3)	The increase in blood lead concentration	26
	affecting a person's IQ	
Figure (4)	A relative contribution of different	35
	sources to human cadmium exposure	
Figure (5)	Values for cadmium toxicity	36
Figure (6)	Acetylcholine metabolism at the nerve	38
	synapses of the nerve cells	
Figure (7)	Structure of NSE	43
Figure (8)	MDA standard curve	65
Figure (9)	Alpha-1-antitrypsin standard curve	71
Figure (10)	Standard curve of h-NSE.	74
Figure (11)	Standard curve of acetylcholine	76
Figure (12)	Standard curve of chromium metal	79
Figure (13)	Standard curve of lead	80
Figure (14)	Standard curve of cadmium metal	82
Figure (15)	Bar chart shows the mean value of	83
	Age distribution in Brick Kiln workers	
	groups and Control group	
Figure (16)	Bar chart shows the mean value of	84
	BMI Change in Brick Kiln workers	
	groups and Control group	
Figure (17)	Bar chart shows the mean value of	84
	Exposure time per day in Brick Kiln	
	workers groups.	0.5
Figure (18)	Bar chart shows the mean value of	86
	Blood pH in the studied groups.	

List of figures

Figure (19)	Mean value of PCO ₂ in the studied	87
	groups	
Figure (20)	Mean value of PO ₂ in in the studied	88
	groups	
Figure (21)	Mean value of AST in the studied	89
	groups.	
Figure (22)	Mean value of ALT in the studied	90
	groups.	
Figure (23)	Mean value of Gamma-Glutamyl	91
	transferase (GGT)	
Figure (24)	Mean value of Serum Creatinine and	92
	Blood Urea in the studied groups	
Figure (25)	Mean value of AAT in the studied	94
	groups.	
Figure (26)	Mean value of MDA in the studied	95
	groups	
Figure (27)	Mean value of Nitric Oxide in the	96
	studied groups	
Figure (28)	Mean value of Total Antioxidant	97
	Capacity in the studied groups	
Figure (29)	Mean value of Pb, Cd and Cr in the	99
T1 (20)	studied groups	100
Figure (30)	Mean value of Serum acetylcholine	100
F! (21)	(Ach)	101
Figure (31)	Mean value of NSE in the studied	101
F: (22)	groups	100
Figure (32)	Mean value of PChE in the studied	102
E: (22)	groups	102
Figure (33)	Mean value of RBCs in the studied	103
E: (24)	groups	104
Figure (34)	Mean value of Hb in the studied groups	104
Figure (35)	Mean value of Hct in the studied groups	104