

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Ain Shams University
Faculty of Women for Arts Science and Education.

Biochemistry and Nutrition Department

Comparative Study of Native or Nano Quercetin on Epigenetic modification and Nephropathy Biomarkers post Challenges in Diabetic Hamsters

Thesis

Submitted for Faculty of Women for Arts, Science and Education,
Ain Shams University
In Partial Fulfillment for the Doctor of Philosophy
in Science Degree (PhD) in Biochemistry and Nutrition

<u>By</u> Soha Shebl Tawfik Nassar

MSc. in the Biochemistry and Nutrition Department Biochemistry & Nutrition Department, Faculty of Women for Arts, Science and Education, Ain Shams University

Supervisors:

Prof. Dr. Mona Ahmed Sadek

Prof. of Biochemistry and Nutrition,
Biochemistry & Nutrition Department,
Faculty of Women for Arts, Science and Education, Ain Shams University

Prof. Dr. Gehan Salah El-Din Moram Aly

Prof. of Nutrition,
Biochemistry & Nutrition Department,
Faculty of Women for Arts, Science and Education, Ain Shams University

Dr. Huda Mohammed Ismail

Lecturer of Biochemistry and Nutrition,
Biochemistry & Nutrition Department,
Faculty of Women for Arts, Science and Education, Ain Shams University

ACKNOWLEDGEMENT

First and foremost, thanks to **ALLAH** for most merciful and most gracious who gave me the ability to carry out this work.

Sadek, Prof. of Biochemistry and Nutrition, Biochemistry and Nutrition Department, Faculty of Women for Arts, Science and Education, Ain Shams University, not only for suggesting, planning the point of research and valuable supervision, but also for her great help, guidance, appropriate choice of the research topic, continuous encouragement, she tided me over many difficulties throughout this work. No words seen to be sufficient to describe, to her owe much.

I would like to express heartily thankful to **Prof. Dr. Gehan salah El-Din Moram**, Prof. of Nutrition, Biochemistry and Nutrition Department, Faculty of Women for Arts, Science and Education, Ain Shams University, for helping me, sincere advice, immense guidance and her directions which sat me on the right track as well as supporting me during all steps of this work.

My deep thanks with love to **Dr. Huda Mohamed Ismail**, lecturer of Biochemistry and Nutrition, Biochemistry and Nutrition Department, Faculty of Women for Arts, Science and Education, Ain Shams University, for helping me and valuable advice to me during all steps of this work.

I am thankful to **Prof. Dr. Kawkab Abd El-Aziz**, Prof. of histopathology, Department of Pathology, Faculty of Veterinary Medicine, Cairo University, for the help that she offered in the microscopic examination carried out in this study.

With great pleasure, I would like to express my sincere gratitude to **the staff members** of Biochemistry and Nutrition Department, Faculty of Women for Arts, Science and Education, Ain Shams University, for their encouragement to carry out this work.

Soha Nassar

Diabetic nephropathy (DN) refers to the deterioration of kidney function and is one of the major public health problems, in spite of medical care developing. This disease is multifactorial and their current treatment strategies are only associated with symptomatic relief rather than curbing their progression. Phytochemicals have been consistently proposed as alternative therapy in modern medicine, but their efficacy is somewhat limited by rapid metabolism, insufficient permeability across membranes and decreased its bioavailability and stability in tissues. Fortunately, current advances in nanotechnology present opportunities to overcome such limitations in delivering active phytochemicals candidates.

The main goal of this study was to examine the possible regulatory effects of quercetin nanoparticles (QUNPs) in compare with native quercetin either with or without metformin on DN through different biological, epigenetic, molecular and biochemical measurements in addition of the histopathological changes in kidney tissues sections in DN hamsters. The first phase of this study used high resolution transmission electron microscope (HR-TEM) image to characterize QUNPs and the results revealed that average size of quercetin was in the nanoscale. The biological trial showed that DN hamsters consumed native or nano quercetin with or without metformin caused significant enhancement in nutritional parameters; change in body weight, feed intake, feed efficiency ratio, feed conversion ratio and relative weight of kidney (P < 0.05) as compared to DN untreated group. QUNPs plus metformin treated group was the most effective by virtue of their small size and characteristics, followed by group consumed native quercetin with metformin. Diabetic and nephropathy biomarkers showed a significant improvement in all treated groups as well as increase expression of insulin receptor substrate -1 (IRS-1) and glucose transporter -4 (GLUT-4) genes. Our results illustrated that the effect of QUNPs plus metformin was the most effective in IRS-1 and GLUT-4 gene expression by 618.18% and 253.33%, respectively that correlated with inhibition of histone deacetylase activity (HDACs) by37.52% compared to DN untreated group which in turn improved diabetic and nephropathy biomarkers. Results of gene expression were confirmed by immunohistochemical analysis. Furthermore, antioxidant effects followed the same direction and were apparent through significantly increment in superoxide dismutase and glutathione peroxidase activities. Levels of metabolic dysfunction, inflammation and apoptosis also reflect the treatments on DN. The levels of inflammatory biomarkers decreased in all treated groups, while QUNPs with metformin was the most effective of all tested treatments, where the level of interleukin-6 and tumor necrosis factor-α was decreased by 47.37% 83.75%, respectively compared to DN untreated group. These results were confirmed by histochemical examinations in kidney tissues. Interestingly, all tested treatments significantly exhibit renal improvement; however, QUNPs with metformin was the most effective.

LIST OF ABBREVIATIONS

4-AAP 4-	-aminoantipyrine
----------	------------------

A/G ratio	Albumin/globulins ratio
AChE	Acetylcholine esterase
ACR	Albumin: creatinine ratio
AGEs	Advanced glycation end products
AIDS	Acquired immunodeficiency syndrome
AIN-93 M	American Institute of Nutrition-93 for
	maintenance
AKT	Protein kinase B
ALEs	Advanced lipoxidation end products
AMP	Adenosine monophosphate
AMPK	Adenosine monophosphate activated protein
	kinase
AP-1	Activator protin-1
aPKC	Atypical protein kinase C
AR	Aldose reductase
ARIs	Aldose reductase inhibitors
ATP	Adenosine triphosphate
BCG	Bromocresol green
BMP	Bone-morphogenic protein
BSA	Bovin Serum Albumin
cDNA	Complementary DNA
CFTR	Cystic fibrosis transmembrane conductance
	regulator
CID	Chemical Industries Development
3CLpro	3-chymotrypsin-like protease
COVID-19	Corona virus disease -2019
COX	Cyclooxygenase
cPKC	Conventional protein kinase C
Ct	Critical threshold
DAG	Diacylglycerol
DHBS	3,5-Dichloro-2-hydroxybenzene sulfonic acid
DKD	Diabetic kidney diseases
DM	Diabetes mellitus
DN	Diabetic nephropathy
DNA	Deoxyribonuclic acid
DPP 4	Dipeptidyl peptidase 4
EC	Endoplasmic cell
ECM	Extracellular matrix
EDTA	Ethylene diamine tetra acetic acid

Egr1	Early growth response 1
ELISA	Enzyme-linked immunosorbent assay
EMT	Epithelial-to- mesenchymal transition
eNOS	Endothelial nitric oxide synthase
ER	Endoplasmic reticulum
ERK	Extracellular signal-regulated kinases
ESRD	End-stage renal disease
FCR	Feed conversion ratio
FER	Feed efficiency ratio
FFA	Free fatty acids
G-6-Pase	Glucose-6-phosphatase
GBM	Glomerular basement membrane
GDM	Gestational diabetes mellitus
GFR	Glomerular filtration rate
GLcNAc	N-acetylglucosamine
GLP-1	Glucagon-like peptide 1
GLUT-4	Glucose transporter 4
GO	Glyoxal
GPx	Glutathione peroxidase enzyme
GR	Glutathione reductase
GSH	Reduced glutathione
GSSG	Oxidized Glutathione
H_2O_2	Hydrogen peroxide
HAT	Histone acetyl transferase
Hb	Hemoglobin
HbA1c	Glycated hemoglobin
HDAC	Histone deacetylase
HF-HFr	High fat-High fructose
HFD	High- fat diet
HIV	Human immunodeficiency viruses
HOMA-IR	Homeostasis model assessment
HR-TEM	High Resolution-transmission Electron
	Microscope
HRP	Horseradish peroxidase
ICAM-1	intercellular adhesion molecule-1
IL-6	Interleukin-6
iNOS	Inducible nitric oxide synthase
INS-QT-	Insulin-quercetin-loaded liquid crystalline
LCNPs	nanoparticles

IR	Insulin receptor
IRS-1	Insulin receptor substrate - 1
LADA	Latent autoimmune diabetes of adulthood
LSD	Least significant difference
MAPK	Mitogen-activated protein kinase
MCP-1	Monocyte chemoattractant protein-1
MDA	Malondialdehyde
MGO	Methylglyoxal
MODY	Maturity- onset diabetes of the young
MRNA	Messenger ribonucleic acid
mTOR	Mammalian target of rapamycin
NaClO	Sodium hypochlorite
NAD^+	Nicotinamide adenine dinucleotide
$NADP^{+}$	Nicotinamide adenine dinucleotide phosphate
NADPH	Reduced nicotinamide adenine dinucleotide
	phosphate
NBT	Nitroblue tetrazolium
NDM	Neonatal diabetes mellitus
NEDA	N-(1-naphthyl)- ethylenediamine
NF-ĸB	Nuclear factors kappa B
NO	Nitric oxide
NOS3	Nitric oxide synthase3
NOX	NADPH oxidase
nPKC	Novel protein kinase C
NPs	Nanoparticles
O ₂ -	Superoxide anion
OD	Optical denisty
8-OHdG	8- hydroxydeoxyguanosine
PAI-1	Plasminogen activator inhibitor 1
PBMCs	Peripheral blood mononuclear cells
PBS	Phosphate buffer saline
PCR	Polymerase chain reaction
Pdx1	Pancreatic and duodenal homeobox1
PEPCK	Phosphoenolpyruvate carboxykinase
PFF	protein free filtrate
PI3K	Phosphatidylinositol 3-kinase
PKC	Protein kinase C
PLpro	papain-like protease
PMS	Phenazine methosulphate

PPARγ	Peroxisome proliferator-activated receptor
ΠΑΚγ	gamma
PTP1B	protein tyrosine phosphatase 1B
QUNPs	Quercetin nanoparticles
	-
RAGEs	Receptor for advanced glycation end products
RBCs	Red blood cells
RNA	Ribonuclic acid
ROS	Reactive oxygen species
rpm	Round per minute
RT-PCR	Reserve transcription-polymerase chain reaction
SARS-CoV-2	Severe acute respiratory syndrome coronavirus -2
SD	Standard deviation
SDH	Sorbitol dehydrogenase
SERCA	Sarco (endo) plasmic reticulum Ca ²⁺ -ATPase
SGLT 2	Sodium-glucose co-transporter 2
SIRTs	Sirtuins
SOD	Superoxide dismutase enzyme
SPSS	Statistical Package for Social Science
STAT3	Signal transducer and activator of transcription 3
STZ	Streptozotocin
T1DM	Type 1 diabetes mellitus
T2DM	Type 2 diabetes mellitus
TBA	Thiobarbituric acid
TCA	Trichloroacetic acid
TEM	Transmission electron microscope
TGF-β	Transforming growth factor β
T ^m	Melting temperature
TMB	Tetra Methyl Benzidine
TNF-α	Tumor necrosis factor-α
TRX	Thioredoxin
TXNIP	Thioredoxin-interacting protein
UAE	Urine albumin excretion
UCC	Urinary creatinine concentration
UDP	Uridine diphosphate
UV	Ultraviolet
VEGF	Vascular endothelial growth factors
WHO	World Health Organization
L	<u>υ</u>

Subje	ct	Page
		No.
Abstract	-	I
	bbreviation	III
List of co		VIII
List of ta	ables	XIV
List of fi	gures	XVI
Introd		1
	f the work	5
	v of literature	7
	Diabetes mellitus	7
1.	1.1. Types of diabetes	9
	1.2. Etiology of type1 and type 2 diabetes mellitus	13
	1.3. Complications of diabetes	14
2.	Diabetic nephropathy	17
	2.1. Relation between diabetes mellitus and diabetic	17
	nephropathy	
	2.2. Risk factor for diabetic nephropathy	20
	2.3. pathophysiology of diabetic nephropathy	20
	2.3.1. Hemodynamic changes	20
	2.3.2. Structural abnormalities	22
	2.3.3. Epigenetic alteration	22
	2.3.4. Advanced glycation end-products	27
	2.3.5. Aldose reductase	29
	2.3.6. Oxidative stress as a common mediator	32
	2.3.7. Protein kinase C	36
	2.3.8. Impaired autophagy activity	39
	2.4. Prevention and management of diabetic	46
	nephropathy	
	2.4.1. Pharmacological therapy	46
	2.4.2. Phytotherapy in management of diabetic	48
	nephropathy	
3.		59
	3.1. Health benefits of quercetin	62
	3.2. Absorption, metabolism and bioavailability of	65
	quercetin	
4.	Nanoparticles	69
	4.1. Synthesis of nanoparticles	69

4.2. Importance of nanoparticles from natural sources in	73
different diseases	75
4.3. The antidiabetic mechanisms of nanoparticles	75 76
Materials and Methods	76
Materials	76
1- Chemicals	76
2- Animals	76
3- Diet	76
<i>Methods</i>	81
 Synthesis of quercetin nanoparticles 	81
2. Characterization of quercetin nanoparticles using	81
High Resolution- Transmission Electron Microscope	
(HR-TEM) technique	
3. The acute toxicity study and LD_{50} of quercetin native	82
and nanoparticles	
4. Animal trial	83
5. Nutritional evaluations	88
6. Assessment of Nephropathy biomarkers	89
6.1. Assessment of glomerular filtration rate	90
7. Determination of diabetic molecular analysis	92
7.1. IRS-1 and GLUT-4 gene expression analysis	92
7.2. IRS-1 and GLUT-4 immunohistochemical	100
analysis	100
8. Determination of epigenetic modification in diabetic	102
nephropathy	100
8.1. Determination of Histone Deacetylase	102
enzyme activity 9. Biochemical Measurements	106
9. Biochemical Measurements 9.1. Evaluation of diabetic biomarkers	106 106
	106
9.1.1. Determination of blood glucose concentration	100
9.1.2. Determination of serum insulin level	107
9.1.2. Determination of serum insum level 9.1.3. Determination of insulin resistance	110
9.1.4. Determination of β- cells function	110
9.1.5. Determination of glycated	110
hemoglobin level in blood	110
9.1.6. Determination of serum C- peptide	112
9.2. Evaluation of renal function	114
9.2.1. Determination of serum urea	114
concentration	'
· · · · · · · · · · · · · · · · · · ·	

9.2.2. Determination of serum uric acid	115
concentration	
9.2.3. Determination of serum creatinine	117
concentration	
9.2.4. Determination of serum total protein	117
concentration	
9.2.5. Determination of serum albumin	118
concentration	
9.2.6. Calculation of serum globulins	120
9.2.7. Calculation of A/G ratio	120
9.2.8. Determination of urine albumin	120
concentration	
9.2.9. Determination of urine creatinine	120
concentration	120
9.3. Assessment of diabetic nephropathy	121
biomarkers in kidney tissues	
9.3.1. Determination of renal advanced	121
glycation end products concentration	1-1
9.3.2. Determination of renal 8-	123
hydroxydeoxyguanosine concentration	120
9.3.3. Determination of renal	124
cyclooxygenase-2 activity	12.
9.3.4. Determination of renal aldose	125
reductase activity	123
9.4. Determination of inflammatory and apoptotic	127
biomarkers	12,
9.4.1. Determination of serum interleukin-6	127
concentration	127
9.4.2. Determination of serum tumor	128
necrosis factor-α concentration	120
9.4.3. Determination of DNA fragmentation	129
9.5. Determination of antioxidant biomarkers	131
9.5.1. Determination of renal superoxide	131
dismutase enzyme activity	131
9.5.2. Determination of renal glutathione	133
peroxidase enzyme activity	133
9.6. Assessment of oxidative stress biomarkers	136
9.6.1. Determination of renal	136
	150
malondialdehyde concentration	

9.6.2. Determination of renal nitric oxide	137
concentration	
10. Statistical analysis	139
11. Histopathological examination of kidney tissues	139
Results and Discussion	140
1. Characterization of quercetin nanoparticles using High	140
Resolution- Transmission Electron Microscope technique (HR-TEM)	
2. Acute toxicity of both of quercetin native and nanoparticles	143
3. Oral effects of native or nano quercetin with and without	146
metformin on nutritional evaluations of diabetic nephropathy	170
hamsters	
4. Oral effects of native or nano quercetin with and without	153
metformin on nephropathy biomarkers of diabetic	133
nephropathy hamsters	
5. Oral effects of native or nano quercetin with and without	162
metformin on muscular IRS-1 and GLUT-4 gene expression	102
and immunohistochemical measurements of diabetic	
nephropathy hamsters	
6. Oral effects of native or nano quercetin with and without	172
metformin on epigenetic modifications of diabetic	
nephropathy hamsters	
7. Oral effects of native or nano quercetin with and without	179
metformin on blood diabetic biomarkers of diabetic	
nephropathy hamsters	
8. Oral effects of native or nano quercetin with and without	195
metformin on renal function biomarkers of diabetic	
nephropathy hamsters	
9. Oral effects of native or nano quercetin with and without	214
metformin on diabetic nephropathy biomarkers in kidney	
tissues of diabetic nephropathy hamsters	
10.Oral effects of native or nano quercetin with and without	227
metformin on serum inflammatory biomarkers and apoptotic	
changes of diabetic nephropathy hamsters	
11.Oral effects of native or nano quercetin with and without	239
metformin on renal tissue antioxidant biomarkers of diabetic	
nephropathy hamsters	
12. Oral effects of native or nano quercetin with and without	246
metformin on renal tissue oxidative stress biomarkers of	
diabetic nephropathy hamsters	