

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Efficacy of Umbilical Cord Blood-derived Stem Cells Transplantation versus their conditioned media in Hypothyroid Rats

Thesis

Submitted in Partial Fulfillment of the M.D. Degree in Endocrinology & Metabolism

By

Maged Saied Fathy Ahmed Hossameldin

Endocrinology & Metabolism Specialist

Supervised by

Prof. Dr. Mohamed Reda Halawa

Professor of Internal Medicine and Endocrinology Faculty of Medicine, Ain Shams University

Prof. Dr. Samuel Refetoff

Professor of Endocrinology and Genetics Head of Thyroid Study Unit -University of Chicago

Ass. Prof. Dr. Laila Mahmoud Ali Hindawy

Assistant Professor of Internal Medicine and Endocrinology Faculty of Medicine, Ain Shams University

Ass. Prof. Dr. Asmaa Abd El Monem Abo Zeid

Assistant Professor of Histology and Cell Biology Faculty of Medicine, Ain Shams University

Dr. Dina Ahmed Marawan

Lecturer of Internal Medicine and Endocrinology Faculty of Medicine, Ain Shams University

Faculty of Medicine - Ain Shams University 2021

Acknowledgment

First and foremost, I feel always indebted to ALLAH, the Most Kind and Most Merciful.

It is my great honor to express my deepest gratitude and thanks to **Professor Dr. Mohamed Reda Halawa** Professor of Endocrinology, Faculty of Medicine, Ain Shams University, to whom I shall always be indebted for his guidance, support, and understanding as well as for the efforts he always does for the prompt removal of obstacles that hamper our achievement. His kindness, patience, meticulous supervision, and constructive criticism can never be either rewarded or forgotten.

I offer my sincere thanks to **Professor Dr. Laila Hindawy,** Assistant Professor of Endocrinology, Faculty of Medicine, Ain Shams University, for her great patience and support since the beginning of this work, as well as her true encouragement and a keen interest in the progress and accomplishment of this work.

I deeply appreciate **Professor Dr. Asmaa Abozeid,** Assistant professor of Histology and Cell Biology and the Head of Stem Cell Unit, Faculty of Medicine, Cairo University for her valuable follow-up and friendly attitude throughout her supervision of this work. I wish also to acknowledge, with appreciation, her continuous constructive guidance and criticism.

Many appreciation and respect to **Dr. Dina Ahmed Marawan**, Lecturer of Endocrinology and Internal Medicine, Faculty of Medicine, Ain Shams University, for the great effort in this study and the continuous guidance and supervision.

No words can describe my deep appreciation to my professor and mentor **Professor Dr. Samuel Refetoff,** Professor of Endocrinology, **Professor Dr. Alexandra Dumitrescu** Associate Professor of Endocrinology, University of Chicago Pritzker School of Medicine, for their enormous help and support in the accomplishment of this work, as well as for their great support, constructive guidance, and kindness that I can never forget.

Maged Saied Fathy Ahmed Hossameldin

Tist of Contents

Title	Page No.
List of Tables	
List of Figures	iii
Tist of Abbreviations	vii
Introduction	1
Aim of the Work	3
Review of Literature	
Thyroid Gland	4
Stem Cell	36
Conditioned Media	72
Patients and Methods	109
Results	126
Discussion	158
Summary	168
Conclusion	171
Recommendations	172
References	173
Arabic Summary	

Tist of Tables

Table No.	Title	Page No.
Table (1):	GFs, CK and chemokines secreted by MSCs) in the CM	•
Table (2):	Comparison between TSH at day 0, and day 40 in each group	•
Table (3):	Comparison between the four groups regarding TSH at day 0, day day 40Comparison between the four groups regarding TSH at day 0, day day 40	30, and studied 30, and
Table (4):	Comparison between FT4 at day 0, and day 40 in each group	•
Table (5):	Comparison between the four studied regarding FT4 at day 0, day 30 and day	-
Table (6):	Comparison between FT3 at day 0, and day 40 in each group	•
Table (7):	Comparison between the four studied regarding FT3 at day 0, day 30, and day	0 1
Table (8):	Comparison between weight at day 30, and day 40 in each group	. •
Table (9):	Comparison between the four studied regarding weight at day 0, day 30, and	O 1
Table (10):	Comparison between the tempera day 0, day 30, and day 40 in each gro	
Table (11):	Comparison between the four studied regarding the temperature at day 0, and day 40	day 30,

Tist of Tables (Cont...)

Fig. No.	Title	Page No.
Table (12):	Comparison between SCs injection intranasal vs intravenous routes regall parameters at day 0, day 30, and Stem cell group.	arding day 40
Table (13):	Comparison between CM injection intranasal vs intravenous routes regall parameters at day 0, day 30, and CM group	arding day 40

Tist of Figures

Fig. No.	Title	Page No.
Figure (1):	Gross Anatomy of the thyrsurroundings	
Figure (2):	Expression of thyroid transfactors and the stages of development	thyroid
Figure (3):	Hypothalamic-pituitary-thyroid	axis 9
Figure (4):	Algorithm for the interpretation of	of TFTs 13
Figure (5):	Normal thyroid transverse plane	17
Figure (6):	Interpretation of thyroid function associated with hypothyroidism	
Figure (7):	Signs and Symptoms of Hypothyr	oidism27
Figure (8):	Events influencing the evolutreatment trends in hypothyroidis	
Figure (9):	The hierarchy of stem cells	37
Figure (10):	Stem Cells found in cord tissue	38
Figure (11):	Layers of complexity in stem cell	
Figure (12):	Biological properties supporting clinical use	
Figure (13):	The differentiation potent mesenchymal stem cells	
Figure (14):	Timeline for stem cell-based thera	apies48
Figure (15):	Historic landmarks in the field o stem cell biology	
Figure (16):	The MSC secretome in rege urology (Sun, Abelson et al., 20	

Tist of Figures (Cont...)

Fig. No.	Title	Page No.
Figure (17):	Modes of MSC-based thera	
Figure (18):	Potential clinical applications of I	EVs 85
Figure (19):	Conventional and emerging isolation techniques	
Figure (20):	Hypothetical model of ASC-CCM for visual deficits of mild TBI	
Figure (21):	Comparison between TSH at da 30, and day 40 in each group	• . •
Figure (22):	Comparison between the four groups regarding TSH at day 0, and day 40	, day 30,
Figure (23):	Comparison between FT4 at da 30, and day 40 in each group	
Figure (24):	Comparison between the four groups regarding FT4 at day 0, and day 40	day 30,
Figure (25):	Comparison between FT3 at da 30, and day 40 in each group	•
Figure (26):	Comparison between the four groups regarding FT3 at day 0, and day 40	day 30,
Figure (27):	Comparison between weight at day 30, and day 40 in each group	• . •
Figure (28):	Comparison between the temper day 0, day 30, and day 40 in each	

Tist of Figures (Cont...)

Fig. No.	Title	Page No.
Figure (29):	A. Group I control group showing follicles lined with cuboidal epit with round central nuclei (arrowfew parafollicular cells with larg (arrowheads).	ithelium ws) and e nuclei
Figure (30):	Electron microscopic picture of A . control rat showing follicular ce euchromatic nuclei with periphe islet chromatin (N).	lls have eral and
Figure (31):	Electron microscopic picture of A III (SC intravenous) shows f epithelium with a euchromatic and peripheral chromatin (N)	ollicular nucleus
Figure (32):	Electron microscopic picture of A VI (CM intravenous) and I intranasal) show follicular epi with a euchromatic nucleu peripheral chromatin (N)	3. (CM ithelium and
Figure (33):	Representative immunohistorimages for iNOS expression in the gland.	thyroid
Figure (34):	Representative immunohistorimages for Bcl-2 expression in the gland.	thyroid
Figure (35):	Representative immunohistorimages for BAX expression in the gland.	thyroid
Figure (36):	A. Group III (SC intravenous)	148

Tist of Figures (Cont...)

Fig. No.	Title	Page No.
Figure (37):	Histogram showing the percentage of iNOS immune for the different study groups	positive cells
Figure (38):	Histogram showing the percentage of Bcl-2 immune for the different study groups	positive cells
Figure (39):	Histogram showing the percentage of BAX immune for the different study groups	positive cells

Tist of Abbreviations

Abb.	Full term
3D	.three-dimensional
ACR TI-RADS	American College of Radiology-Thyroid
	Imaging Reporting and Data System
AG	. autoimmune gastritis
AITDs	autoimmune thyroid diseases
<i>AML</i>	. acute myelogenous leukemia
<i>AP</i>	. autoimmune polyendocrino pathy
ARDS	acute respiratory distress syndrome
ASC	$. adult \ SC$
ASD	.Autism spectrum disorder
<i>BMR</i>	.Basal metabolic rate
<i>BPD</i>	.bronchopulmonary dysplasia
BTE	bone tissue engineering
CeH	.central hypothyroidism
$CeH\ thyrotropin$	Central hypothyroidism
CEUS	. Contrast-enhanced ultrasound
CgA	.chromogranin A
CH	. Congenital hypothyroidism
<i>CM</i>	. Conditioned medium
CMs	. cardiomy o cytes
COP	. Carbon monoxide poisoning
COVID-19	.coronavirus disease 2019
DRGs	dorsal root ganglia
DTE	desiccated thyroid extract
<i>ED</i>	.Erectile dysfunction
	.energy expenditure
<i>ES</i>	.Embryonic stem
ESC	-
ESCs	.Embryonic stem cells
EVs	. Extracellular vesicles

Tist of Abbreviations (Cont...)

Abb.	Full term
FCPC	fetal cartilage-derived progenitor cell
FNAB	fine-needle aspiration biopsy
FRDA	Friedreich ataxia
FT4	Free T4
<i>GD</i>	Graves's disease
<i>GO</i>	Graves' ophthalmopathy
hADSCs	human adipose-derived stem cells
hBMSCs	human bone marrow-derived mesenchymal stem cells
hNanog	homeobox transcription factor Nanog
<i>HNF-4-α</i>	hepatocyte nuclear factor 4-α
HO-1	heme oxygenase-1
hOPs	human calvarium osteoprogenitor cells
<i>HPT</i>	$\ hypothalamic$ -pituitary-thyroid
HT	Hashimoto's thyroiditis
<i>ICU</i>	intensive care unit
<i>iPSCs</i>	induced pluripotent stem cells
<i>i-TSHD</i>	isolated TSH deficiency
<i>IV</i>	Intravenous
<i>LT</i>	Lingual thyroid
LT4	levothyroxine
MSCs	Mesenchymal stem/stromal cells
MVs	microvesicles
<i>NHP</i>	Non-human primate
<i>OA</i>	Knee osteoarthritis
PAX-8	paired box gene 8
pHT	Painful Hashimoto thyroiditis
PSCs	Pluripotent stem cells
<i>PTM</i>	pretibial myxedema

Tist of Abbreviations (Cont...)

Abb.	Full term
<i>RPE</i>	retinal pigment epithelial
RS	Raman spectroscopy
SARS-CoV-2.	severe acute respiratory syndrome coronavirus 2
SC	Stem cells
SCA-1	stem cell antigen 1
SC-alpha	cell-derived human pancreatic alpha
SCN	stem cell niche
sHT	subclinical hypothyroidism
<i>SWV</i>	shear wave Velocity
<i>T1D</i>	type 1 diabetes
<i>T</i> 3	triiodothyronine
<i>T4</i>	thy roxine
<i>TEE</i>	$th rombo embolic\ Events$
<i>TH</i>	Thyroid hormones
<i>THA</i>	Thyroid Hemi agenesis
<i>TN</i>	thyroid nodules
<i>TRAb</i>	TSH-R $autoantibodies$
<i>TRH</i>	thyrotropin-releasing hormone
<i>TSAb</i>	$thy roid\mbox{-}stimulating\ antibodies$
<i>TSH</i>	Thyroid-stimulating hormone
<i>TSHR</i>	TSH receptor
TTF-1	thyroid transcription factor 1
TTF-2	thyroid transcription factor 2
<i>UCB</i>	umbilical cord blood