

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

# بسم الله الرحمن الرحيم





HANAA ALY



شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله



شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم



HANAA ALY



شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

# جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات



يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار



HANAA ALY



Faculty of Women for Arts, Science and Education Ain Shams University

# Preparation and Characterization of New Hydrogels for Different Applications

A Thesis Submitted for Degree of M.Sc. in Organic Chemistry

 $\mathbf{B}\mathbf{v}$ 

## **Taghreed Hassan Ahmed Abdalla**

(B.Sc. 2015)

To

# Chemistry Department Faculty for Women for Arts, Science and Education Ain Shams University Cairo, Egypt

# **Supervisors**

## Prof. Dr. Nadia G. Kandile

Professor of Applied Organic Chemistry
Faculty of Women for Arts, Science and Education
Ain Shams University

## Assis. Prof. Dr. Abir S. Nasr

Assistant Professor of Organic Chemistry
Faculty of Women for Arts, Science and Education
Ain Shams University

## Prof. Dr. David R K Harding

Professor of Chemistry
Institute of Fundamental Science, Massey University,
New Zealand

(2021)



Faculty of Women for Arts, Science and Education Ain Shams University

# **Approval Sheet**

# Preparation and characterization of new hydrogels for different applications

 $\mathbf{B}\mathbf{y}$ 

# **Taghreed Hassan Ahmed Abdalla**

| Thesis Supervisors            | Approved                       |  |  |
|-------------------------------|--------------------------------|--|--|
| Prof. Dr. Nadia G. Kandile    |                                |  |  |
| Assis. Prof. Dr. Abir S. Nasr |                                |  |  |
| Prof. Dr. David R K Harding   |                                |  |  |
| Head                          | ead of Chemistry of Department |  |  |
| Prof. D                       | Dr. Omaima A. Mustafa          |  |  |
|                               |                                |  |  |



## **QUALIFICATION**

Student Name : Taghreed Hassan Ahmed Abdalla

Scientific Degree : Bachelor Degree

Department : Chemistry

**College** : Faculty of Women for Arts, Science

and Education

**University** : Ain Shams University

B. Sc. Graduation Date :2015

M. Sc. Graduation Year :2021

# Acknowledgment

My deep thank to Allah for supporting, and guidance in everything in my life.

I must not forget those who were the reason for our success, who supported me, stood by me, motivated me, and pushes me forward.

I am greatly indebted and grateful to **Prof. Dr. Nadia G. Kandile**, Prof. of Applied Organic Chemistry at the Chemistry Department, Faculty of Women for Arts, Science and Education, Ain Shams University, for her keen interest, encouragement, kind supervision, was a great help through the course of this research work. She managed me in the right direction and provided me with all the necessary facilities.

I would like to express my special thanks of gratitude to Assis. Prof. Dr. Abir S. Nasr, Assistant Professor of Organic Chemistry at the Chemistry Department, Faculty of Women for Arts, Science and Education, Ain Shams University, for her continuous support during the process of researching and her good guidance.

I would like to express my special thanks of gratitude to **Prof. Dr. David R K Harding**, Professor of Chemistry at the Chemistry Department, Institute of

Fundamental Sciences, Massey University, New Zealand, for helping me in doing a

lot of research and i am really thankful to him.

You have made a great effort for my sake and have all my respect and appreciation. Thank you with all my heart.

# **D**EDICATION

This work was dedicated to my lovely parents.

My sincere thanks and appreciation to my family for supporting me and giving me enough encouragement to reach for my dearms. I have to thank Allah for choosing them to be my family.



## وحدة النشر العلميين مجلة البحث العلمي في العلوم مجلة علمية محكمة



قبـــول بحـــث للنشـــر

Taghreed H. Abdalla<sup>1-2</sup>, Abir S. Nasr<sup>1</sup>, Ghada Bassiuni<sup>2</sup>, David R. Harding<sup>3</sup>, Nadia G. Kandile<sup>5</sup>

- Chemistry Department, Faculty of Women for Art, Science and Education, Ain Shams University, Heliopolis Post Cod. No. 11757, Cairo, Egypt.
- 2 Chemistry Department, Faculty of Engineering, Ain Shams University, Cairo, Egypt.
- 3 Chemistry Institute of Fundamental Science, Chemistry, Massey University. New Zealand-

# تحيطكم علماً أن بحثكم المعنون بـ

"New modified chitosan composites and nanocomposites for different applications"

قد تم تحكيمه عندياً من أساتذة متخصصين في مجال البحث وتقرر قبوله للنشر في مجلة البحث العلمي في الطوم على أن ينشر في عددها الورقي:

العدد: الثامن و الثلاثون لسنة 2021

النرقيم الدولي: (ISSN2356-8364) (Print) (ISSN2356-8364) (Online) بالإضافة التي نشره الكثرونياً (8372-8378) (Online) على موقع مجلة البحث العلمي في العلوم https://jsrs.journals.ekb.eg

وتقضلوا بالقبول مع فانق الاحترام والتقدير ...

عميدة الكلية رئيس التحرير الهبرة أحمد يوسف وكيل الكلية للدراسات الطيا و المنا نالب رئيس التجرير ، أبد / حنان محمد الشاعر ( المراكز ) مدير تعريز المجلة الجدار السعاء راتب د الادار الشاف د الادار الشاف





### King Saud University

#### Arabian Journal of Chemistry

www.ksu.edu.sa



### ORIGINAL ARTICLE

## Fabrication of sustainable hydrogels-based chitosan Schiff base and their potential applications



Taghreed H. Abdalla Abir S. Nasr Ghada Bassioni David R. Harding Garage Nadia G. Kandile a,\*

- \* Chemistry Department, Faculty of Women for Art, Science and Education, Ain Shams University, Héliopolis Post Cod. No. 11757, Cairo, Egypt
- Chemistry Department, Faculty of Engineering, Ain Shams University, Cairo, Egypt
- \* Chemistry Institute of Fundamental Science, Chemistry, Massey University, New Zealand

Received 10 July 2021; accepted 19 October 2021 Available online 26 October 2021

### KEYWORDS

bonicotinic aldehyde: Epichlorohydrin; Nanohydrogel; Biological activity: Metal removal; Ionotropic gelation

Abstract Chemical modifications of chitosan were of interest to scientific researchers for its wide applications. Chitosan has been widely used for synthesis of unique compounds with potential biological activity and also effective for wastewater treatment. In the current study fabrication of new chitosan-based Schiff base hydrogels were fabricated through modification of chitosan with isonicotinic aldehyde to give hydrogel I or with epichlorohydrin or sodium tripolyphosphate via ionotropic gelation processes under the same reaction conditions to give hydrogels le, and nanohydrogels II, IIe respectively. FTIR, XRD, TGA, DSC, SEM, and TEM tools were used for characterization of the fabricated hydrogels I, Ie, II, and IIe hydrogels. The swelling behavior of the fabricated hydrogels in different solvents were determined. Evaluation of the hydrogels for leaching metal ions and biological activity towards different Gram-positive and Gram-negative of microorganisms were studied. The results showed that the highest efficiency for adsorption of cobalt and mercuric ions was revealed for hydrogels le, He (91.3%, 95.9%) and (92.5%, 95.9%) respectively. However, hydrogel He showed remarkable MIC and MBC towards Gram-positive (B. subtilis) (19.5, 38) µg/ml compared to the standard antibiotic Ciprofloxacin (19, 38) µg/ml

© 2021 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecom nmom.org/licenses/by-ne-nd/4.0/).

Peer review under responsibility of King Saud University.



Production and hosting by Elsevier

### 1. Introduction

Water is the most important substance to humans and all living organisms. However, some harmful chemical compounds cause water pollution that gives negative effects on species living in water and also on the widely biological community (Guo et al., 2015). There are many industries released metal ions in water (Chen et al., 2010).

i.org/10.1016/j.arabic.2021.103511

1878-5352 © 2021 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND feeme (http://ec

Corresponding author at: Chemistry Department, Faculty of Women for Art, Science and Education, Ain Shams University, Heliopolis, Post Cod. No. 11757, Caino, Egypt. E-mail address: nadingbk@women.asu.edu.eg (N.G. Kandile).

# **Contents**

# **List of Contents**

| Topic                                                      | page |
|------------------------------------------------------------|------|
| Abstract                                                   |      |
| Aim of the work                                            | I    |
| Summary                                                    | III  |
| 1 Introduction                                             | 1    |
| 1.1 Polymers                                               | 1    |
| <b>1.1.1</b> Natural polymers (Biopolymers)                | 1    |
| <b>1.1.1.1</b> Sources and preparation of natural polymers | 2    |
| <b>1.1.1.2</b> Production of biopolymers                   | 3    |
| <b>1.1.2</b> Classification of biopolymers                 | 4    |
| <b>1.1.2.1</b> Biodegradable biopolymers                   | 4    |
| <b>1.1.2.2</b> Based material classification               | 5    |
| I Sugar based biopolymers                                  | 5    |
| ii Starch based biopolymers                                | 5    |
| iii Cellulose based biopolymers                            | 5    |
| iv Biopolymers based on Synthetic materials                | 5    |
| <b>1.1.2.3</b> Nature of the repeating unit                | 6    |

| 1.1.2.4          | Their polymer backbone                                | 6  |
|------------------|-------------------------------------------------------|----|
| <b>1.1.3</b> Ap  | oplication of biopolymers                             | 6  |
| 1.2 Hydro        | ogels                                                 | 7  |
| <b>1.2.1</b> Cla | assification of hydrogels                             | 7  |
| 1.2.1.1          | Classification based on source                        | 7  |
| 1.2.1.2          | Classification according to polymeric composition     | 8  |
| 1.2.1.3          | Classification based on configuration                 | 9  |
| 1.2.1.4          | Classification based on type of cross-linking         | 9  |
| 1.2.1.5          | Classification based on physical appearance           | 9  |
| 1.2.1.6          | Classification Based on Pore Size                     | 9  |
| 1.2.1.7          | Classification according to network electrical charge | 10 |
| <b>1.2.2</b> Hy  | drogel features                                       | 10 |
| <b>1.2.3</b> Ap  | oplications of hydrogels                              | 11 |
| 1.2.3.1          | Biomedical applications                               | 11 |
| 1.2.3.2          | Biotechnology application                             | 11 |
| 1.2.3.3          | Pharmaceutical applications                           | 12 |
| 1.2.3.4          | Separation technology                                 | 12 |

# List of Contents

| 1.2.3.         | 5 Electroconductive hydrogels and biosensors | 13 |
|----------------|----------------------------------------------|----|
| 1.2.3.         | 6 Agriculture applications                   | 13 |
| 1.2.3.         | 7 Food packaging industry                    | 14 |
| 1.3 Chit       | osan                                         | 15 |
| 1.3.1 S        | ynthesis of chitosan                         | 15 |
| <b>1.3.2</b> H | Extraction of chitosan                       | 16 |
| <b>1.3.3</b> F | Properties of chitosan                       | 18 |
| <b>1.3.4</b> S | Solubility of Chitosan                       | 18 |
| 1.3.5 A        | Applications of chitosan                     | 19 |
| 1.3.5.         | 1 Wastewater treatment applications          | 19 |
| 1.3.5.         | 2 Medical applications                       | 20 |
| 1.3.5          | 3 Food industry applications                 | 20 |
| 1.3.5.         | 4 Agricultural applications                  | 21 |
| 1.3.6 N        | Modification of chitosan                     | 21 |
| 1.3.6.         | 1 Chitosan nanogel                           | 22 |
| 1.3.6.         | 2 Chitosan membranes                         | 22 |
| 1.3.6.         | 3 Chitosan Schiff base                       | 23 |

# List of Contents

| 1.3.6.4                    | Chitosan composite and nanocomposite            | 23 |
|----------------------------|-------------------------------------------------|----|
| 1.3.6.5                    | Formation of crosslinking                       | 24 |
| <b>1.3.7</b> Ap            | plications of chitosan hydrogel                 | 25 |
| 1.3.7.1                    | The Swelling Behaviors                          | 25 |
| 1.3.7.2                    | Metal ions uptake                               | 26 |
| 1.3.7.3.                   | Antimicrobial Activity                          | 27 |
| 1.3.7.4                    | Drug release                                    | 28 |
| 1.4 Heterocyclic compounds |                                                 | 29 |
| 1.5 Benton                 | nite                                            | 30 |
| <b>1.5.1</b> Ty            | pes of bentonite                                | 30 |
| <b>1.5.2</b> Pro           | operties of bentonite                           | 31 |
| 1.5.2.1                    | Water absorption and swelling                   | 31 |
| 1.5.2.2                    | Colloidal and waterproofing properties          | 32 |
| 1.5.2.3                    | Binding property                                | 32 |
| 1.5.2.4                    | Viscosity and thixotropy of aqueous suspensions | 32 |
| 1.6 Nano bentonite         |                                                 | 33 |
| <b>1.6.1</b> Pre           | eparation of nanobentonite                      | 33 |