

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING Electronics and Communications Engineering Department

Low Frequency Meander Dipole Antenna for Ground Penetrating Radar (GPR)

A Thesis

Submitted in partial fulfillment of the requirements for the degree of Master of Science in Electronics and Communications Engineering

Submitted By

Mohamed Saber Ismail Gomaa

Bachelor of Science in Electrical Engineering Electronics Engineering and Electrical Communications Faculty of Engineering, Ain Shams University, 2021

Supervised By

Dr. Angie R. Eldamak

Prof. Dr. Hani A. Ghali

Electronics and Communications Department
Ain Shams University

Electronics and Communications Department British university

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING Cairo – Egypt

Approval Sheet

For the M. Sc. thesis with title

Low Frequency Meander Dipole Antenna for Ground Penetrating Radar (GPR)

By:

Eng. Mohammed Saber Ismail Gomaa

A Thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Electronics and Communications Engineering

Supervision Committee

Title, Name and Affiliation

Signature

Prof. Dr. Hani A. Ghali

Electronics and Communications Department, Faculty of Engineering, British university.

Dr. Angie R. Eldamak

Electronics and Communications Department, Faculty of Engineering, Ain Shams University.

Date: / / 2021

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING Cairo – Egypt

Examiners Committee

For the M. Sc. thesis with title

Low Frequency Meander Dipole Antenna for Ground Penetrating Radar (GPR)

By:

Eng. Mohammed Saber Ismail

A Thesis submitted in partial fulfillment of the requirements for the degree of Master in Electronics and Communications Engineering

Examiners Committee

Title, Name and Affiliation

Signature

Prof. Dr. Hala Abd El Menam Al Sadek Electronic research institute

Prof. Dr. Tarek Abd El Azim Ramadan Ain Shams University.

Prof. Dr. Hani A. Ghali British university.

Dr. Angie R. EldamakAin Shams University.

Date: / / 2021

STATEMENT

This Thesis is submitted to Ain Shams University for the degree of Master of Science in Electronics and Communications Engineering.

The work included in this thesis was carried out by the author at the Electronics and Communication Engineering Department, Faculty of Engineering, Ain Shams University, Cairo, Egypt

No part of this thesis was submitted for a degree or a qualification at any other university or other scientific entity.

Name . Mohammed Saber Ismail Gomaa

Signature :

Date : / /

CURRICULUM VITAE

Name of the Researcher	:	Mohammed Saber Ismail Gomaa
Date of Birth	:	26 Mar 1981
Place of Birth	:	Egypt
First University Degree	:	B.Sc. in Electrical Engineering
Faculty	:	Faculty of Engineering
Name of University	:	Military Technical Collage
Date of Degree	:	July 2003
Position	:	
Technical Committees Membership	:	
E-mail	:	Mohmmedsaber81@gmail.com
Signature	:	
Date	:	/ /

ACKNOWLEDGEMENT

Thanks God for a lot of merits that led to successful completion of this work.

I would like to express my most sincere gratitude to my supervisors

Dr. Angie Reda Eldamak and Prof. Dr. Hani Amin Ghali for their guidance, support and encouragement. Their vast experience and deep understanding of the subject proved to be immense help to me, and also their profound view – points and extraordinary motivation enlightened me in many ways. I just hope my thinking and working attitudes have been shaped according to such outstanding qualities.

I would like to thank my family, mother, father and wife, I would like to present this work for you, without your support I would not have accomplished.

Last but not least, I want to thank all my friends and colleagues for their support and sharing the wonderful times during the past years.

ABSTRACT

Mohammed Saber Ismail Gomaa

Low Frequency Meander Dipole Antenna for Ground Penetrating Radar (GPR),

Master of Science, Ain Shams University, 2021

In this thesis, low frequency antennas for Ground Penetrating Radar (GPR) systems operating at frequency below 200 MHz are developed. The thesis presents design, analysis, fabrication and measurements of all proposed designs. Measurements include reflection coefficient (S_{11}), input impedance (Z) as well as radiation patterns using a homemade setup in the VHF band.

First, printed Meander dipole antenna operating at 73 MHz and 145.75 MHz is presented. The dual band dipole antenna is composed of meander line terminated with a stub. The proposed antenna is implemented on FR4 substrate with an overall size of 61.3 X6.45 cm² $(0.15\lambda_o \text{ x } 0.015\lambda_o)$. A 70% reduction in length is realized with the proposed antenna design compared to a regular dipole operating at the lower band (73 MHz). The reflection coefficient for the measured antenna is -15 dB and -18.5 dB at 73 MHz and 145.75 MHz with bandwidth of 2 MHz and 6.6 MHz, respectively. The antenna exhibits omnidirectional radiation characteristics at both bands with simulated radiation efficiency up to 87%.

Second, the printed meander dipole antenna acquires enhanced -10 dB bandwidth of 20 MHz (13%) compared 6.6 MHz (4.5 %) in the VHF band. Bandwidth enhancement is realized through two techniques; 1) resistive loading to the meander line, and 2) metal strips at the back side acting as capacitive loading. A parametric study is implemented for the position, values of the resistors and the dimensions of the metal strips to realize maximum bandwidth. Using resistive loading, the bandwidth is increased from 6.6 MHz to 12 MHz with efficiency 42 %. On the other hand, adding two metal strips further increases the bandwidth to 20 MHz with efficiency up to 56%. The antenna exhibits omnidirectional radiation characteristics over the operating frequency 140-160 MHz.

Finally, all proposed structures are fabricated, measured and compared to simulated results Measurements are in good agreement with simulation results. Moreover, measurements and simulations for the proposed antennas in proximity to soil as well as with buried objects are also presented

Key words: Ground Penetrating Radar (GPR) – Meander antenna- Low frequency- VHF band

SUMMARY

Ground Penetrating Radar (GPR) systems are commonly used as methods for the detection of underground objects. GPR is used in a range of applications such as borehole inspection, archaeological investigations, building condition evaluation, bridge deck examination, landmine detection (anti-personnel and anti-tank) and reinforced concrete assessment, geophysical investigations, pipes and cable detection.

GPR's core configuration is the transmitter, receiver and signal processing The transmitter decides the types of targets that can be detected; depends on the resolution and depth of penetration, lower or higher bands are required.: (0.01–2 GHz) in architecture and archaeology, (0.5–3 GHz) in military, (1–10 GHz) in medicine. In a GPR system, antennas (transmitting or receiving antennas) are one of the most critical components of this system. In order to achieve a fine resolution and a reasonable penetration depth for a portable GPR, the antenna must have wide bandwidth, good impedance matching, and high gain in addition to small or compact size.

In this thesis, a Low frequency meander dipole antennas for Ground Penetrating Radar (GPR) system with reduced size and wide band are presented. The structure is constructed on a 613 x64.5 mm² FR4 dielectric substrate. The antenna's bandwidth is enhanced by using loading resistance method and two metal strip while the size is decreased by using meander tecqunique. The operational bandwidth of this antenna extends from 6 MHz to 20 MHz. The minimum return loss -14 dB. The average Radiation efficiency is between 26%-54%. The antenna performance was simulated and fabricated. The performance was measured. Good agreement was found between simulation and experimental results.

Table of Contents

pproval Sheet							
STATEMENT							
CURRICULUM VITAE							
ACKNOWLEDGEMENT							
ABSTRACT							
SUMMARY							
Table of Contents							
ist of FIGURES							
List of Tables							
List of Symbols							
List of Abbreviations							
Publications							
- · · · · · · · · · · · · · · · · · · ·							
1.2 Ground Penetrating Radar Applications							
1.2.1 The Application of GPR in Geotechnical Engineering							
1.2.2 Identification of the Water-Table Reflector	3						
1.2.3 Identification of Soil Stratigraphy and Bedrock Depth	4						
1.2.4 Military UXO Detection	5						
1.2.5 Bio-Applications - WOODEN POLE & TREE MAPPING	5						
1.2.6 Archaeological	6						
1.3 GPR Antennas							
1.4 GPR Antenna System Design Challenges							
1.5 Thesis objectives:							
1.6 EM Software Package:							
<u> </u>							
1.7 Organization of the Thesis							
2 Chapter (2) Review of Ground Penetrating Radar Technology							
2.1 Introduction							
2.2 Basic Principles of GPR and Configuration							
2.2.1 Basic Principles							
2.3 Ground Penetrating Radar Types	15						
2.4 GPR Radio Frequency Specifications, Definitions and Standards	17						
2.4.1 Dynamic range	17						
2.4.2 Bandwidth	17						
2.4.3 Unambiguous range	18						
2.4.4 Radar Resolution	18						
2.4.5 Frequency (Penetration Depth versus Resolution)							
2.4.6 GPR Frequency Standards							

2.5	Co	nclusion	25
3 C	hapte	r (3) Literature Review: Printed Low Frequency Antennas	26
3.1	Int	roduction	26
3.2	GP	PR Antennas Types	26
3.3	Lo	w frequency antennas	27
3	.3.1	Monopole antenna	27
3	.3.2	Dual-band monopole antenna	28
3	.3.3	Dual-band VHF antenna	30
3	.3.4	Dipole antenna at 100MHz	31
3	.3.5	Monopole antenna at VHF band	32
3.4	Co	nclusion	33
4 C	hapte	r (4) Low Frequency Miniaturized Meander Line Dipole Antennas	34
4.1	Me	eander Lines Overview	34
4.2	Sin	ngle Frequency Meander Line Antenna	34
4	.2.1	Antenna Design	35
4	.2.2	Simulation results	35
4	.2.3	Experimental Results	37
4.3	Du	al band meander line antennas	38
4	.3.1	Antenna design	38
4	.3.2	Parametric Study	38
4	.3.3	Experiment Result	
5 C	hapte	r (5) Enhanced Bandwidth Dipole Antenna for VHF Applications	46
5.1	Int	roduction	46
5.2	Me	eander Line Dipole with Resistive Loading	46
5	.2.1	Antenna design	46
5	.2.2	Simulation results	47
5	.2.3	Antenna z-impedance	49
5	.2.4	Experimental Results	49
5.3	Me	eander Line Dipole with Resistive Loading and Metal Strips	51
5	.3.1	Antenna design	
5	.3.2	Simulation results	
5	.3.3	Experimental results	
5	.3.4	Input impedance measurement	
6 C	hapte	r (6) Conclusions and Suggestions for Future Work	
6.1	Sui	mmery and Conclusions	56
6.2	Sug	ggestions for Further Work	56
		nces:	
****	ددم ال		60

List of FIGURES

Figure 1-1 Ground penetrating radar (GPR) system and detection diagram[2]	1
Figure 1-2 Site map with position of the required boreholes[4]	4
Figure 1-3 GPR profile image across the borehole #1[4]	4
Figure 1-4 UXO detection and image display of the buried land mine objects[4]	5
Figure 1-5 The Wooden pole and tree mapping[4]	
Figure 2-1 Block diagram of a ground penetrating radar (GPR) system[21]	
Figure 2-2 Step frequency output[23]	17
Figure 2-3 Two pulses in time (T = time between pulses) where a) T>>pulse width	ı b)
T~ pulse width[17]	18
Figure 2-4 Vertical (range) resolution, Horizontal (angular resolution)	19
Figure 2-5 Radar Footprint Spatial resolution.	
Figure 2-6 (a Amplitude Decay in Low-Loss environments, (b Layered earth mode	2122
Figure 3-1 fabricated antenna[25]	27
Figure 3-2 Measured and simulated return loss versus frequency of the proposed	28
Figure 3-3 Folded meander line monopole antenna[21]	29
Figure 3-4 simulated and measured S11[21]	29
Figure 3-5 fabricated design[26]	30
Figure 3-6 Antenna input impedance without (not optimized) and with	30
Figure 3-7 fabricated antenna with extra radiating arms[27]	31
Figure 3-8 Measured S11 of the proposed antenna along with the radiation	
pattern.[27]	31
Figure 3-9 Photograph of fabricated antenna.[28]	32
Figure 3-10 Measured VSWR with and without ground plane[28]	33
Figure 4-1 (a) Structure of one arm of the Meander dipole antenna, (b) Structure of	of
single Meander section	35
Figure 4-2 (a) Reflection coefficient versus frequency at different meander lengths	
Reflection coefficient versus frequency at different meander thickness	
Figure 4-3 Simulated Reflection coefficient: with CST and with HFSS	
Figure 4-4 current distribution at 120 MHz	
Figure 4-5 Simulated radiation patterns: (a) E-plane for at 117 MHz, (b) H-plane a	
117 MHz	37
Figure 4-6 (a) Fabricated Meander dipole antenna with SMA connector, (b)	
Reflection coefficient S11 (dB) versus frequency (Solid: Measurement, Dotted:	
Simulation)	
Figure 4-7 Structure of one arm of the Meander dipole antenna with stub	
Figure 4-8 (a) Reflection coefficient versus frequency at different stub lengths at st	tub
separation distance, Zx1 of 6 mm, (b) Reflection coefficient versus frequency at	40
different stub separation distances at stub length, Zx of 280 mm	40
Figure 4-9 Simulated Reflection coefficient (Solid: Antenna (A), dotted: Antenna	4.0
(B))	
Figure 4-10 Surface current distribution at resonant frequency $f=72.5$ MHz	
Figure 4-11 Surface current distribution resonant frequency <i>f</i> =148.25 MHz	
Figure 4-12 Simulated radiation patterns: (a) E- plane for at 72.5 MHz, (b) H-plane	
72.5 MHz, (c) E-plane for at 148.25 MHz, (d) H-plane at 148.25 MHz	41
Figure 4-13 (a) Fabricated Meander dipole antenna with SMA connector, (b)	
Reflection coefficient S11 (dB) versus frequency (Solid: Measurement, Dotted:	40
Simulation)	42

Figure 4-14 14 (a) Radiation pattern measurement setup. (b) Measured and simulated
E-plane radiation pattern at second resonance
Figure 4-15 measured S11 at different distances from soil
Figure 4-16 S11 versus frequency at different distances from soil. (a)Measured (b)
Simulated
Figure 4-17 Simulated S11 versus frequency for buried object in soil. (a) Magnitude
in dB (b) Phase in degrees44
Figure 5-1 Structure of one arm of the Meander dipole antenna with stub46
Figure 5-2 Reflection coefficient versus frequency for loaded resistance of value r=
300Ω , (a) at different position on the stub, (b) at different meander section (n
represents number of meander section)47
Figure 5-3 Reflection coefficient versus frequency at different resistor values located
at Meander section n=1148
Figure 5-4 Simulation result broadest bandwidth of 12 MHz with resistor value of
1000Ω 48
Figure 5-5 Surface current distribution49
Figure 5-6 Simulated radiation pattern E-plane and H-plane49
Figure 5-7 S11 (dB) versus frequency (Solid: Measurement, Dotted: Simulation)50
Figure 5-8 (a) Radiation pattern measurement setup. (a) Measured and simulated E-
plane radiation pattern50
Figure 5-9 (a) Simulation at different position from ground, (b) Measurement at
different position from ground51
Figure 5-10 Back view of the antenna under test showing the two metal strips and its
parameters52
Figure 5-11 Reflection coefficient versus frequency for antenna with loaded
resistances of r=1000 ohm and metal strips, (a) at Ly=125 mm &Wj=10 mm at
different values of Xc, (b) at Xc = 40 mm & Ly = 125 mm at different values of Wj52
Figure 5-12 Reflection coefficient versus frequency for antenna with loaded
resistances of r=1000 Ω and metal strips at Xc=40 mm & Wj=15 mm at different
values of Ly52
Figure 5-13 Surface current distribution at the resonance frequency of 150 MHz53
Figure 5-14 Simulated radiation pattern at 150 MHz (a) E-plane and (b) H-plane53
Figure 5-15 (a) Fabricated Meander dipole antenna with SMA connector, (b)
Reflection coefficient S11 (dB) versus frequency (Solid: Measurement, Dotted:
Simulation)54
Figure 5-16) (a)Setup for radiation pattern measurement (b) Measured and simulated
E-plane radiation pattern at 150 MHz54