

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Ain Shams University Faculty of Engineering Structural Engineering Department

Study of Imperfect Connections and their Influence on the Behavior of Steel Frames

A Thesis submitted in partial fulfillment of the requirements of the degree of

Doctor of Philosophy in Civil Engineering

(Structural Engineering)

By

Mostafa Nour Eldin Mohamed AbdAllah

Master of Science in Civil Engineering
(Structural Engineering)
Faculty of Engineering, Ain Shams University, 2015

Supervised By

Prof. Dr. Abdelrahim Khalil Dessouki

Professor of Steel Structures - Structural Engineering Department Ain Shams University

Prof. Dr. Sherif Mohamed Ibrahim

Professor of Steel Structures - Structural Engineering Department Ain Shams University

Prof. Dr. Emad Said Salem

Professor of Steel Structures - Civil Engineering Department Al-Azhar University

©Cairo - 2021

Ain Shams University Faculty of Engineering Structural Engineering Department

Study of Imperfect Connections and their Influence on the Behavior of Steel Frames

By

Mostafa Nour Eldin Mohamed AbdAllah

Master of Science in Civil Engineering
(Structural Engineering)

Faculty of Engineering, Ain Shams University, 2015

Examiners' Committee

Name and Affiliation	Signature
Prof. Dr. Fouad Helmy Fouad Professor of Steel Structures, Structural Engineering Department Faculty of Engineering - Alabama University	H. D. James
Prof. Dr. Ahmed Hassan Yousef Abou Donia Professor of Steel Structures, Structural Engineering Department Faculty of Engineering - Ain Shams University	
Prof. Dr. Abdelrahim Khalil Dessouki Professor of Steel Structures, Structural Engineering Department Faculty of Engineering - Ain Shams University	
Prof. Dr. Sherif Mohamed Ibrahim Professor of Steel Structures, Structural Engineering Department Faculty of Engineering - Ain Shams University	

Date: / / 2021

INFORMATION ABOUT THE RESEARCHER

Name: Mostafa Nour Eldin Mohamed AbdAllah

Date of Birth: September 16th, 1987

Place of Birth: Egypt (Cairo)

Qualifications:

M.Sc. Degree in Civil Engineering (Structural Engineering), Faculty of Engineering, Ain Shams University (2015)

B.Sc. Degree in Civil Engineering (Structural Engineering), Faculty of Engineering, Ain Shams University (2009) - Excellent with Honor

Present Job: Structural Engineer at Consultant Office.

Signature:

STATEMENT

This dissertation is submitted to Ain Shams University for the Philosophy

Degree in Structural Engineering.

The work included in this thesis has been carried out by the author in the

Department of Structural Engineering, Ain Shams University, from February

2018 to November 2021.

No part of this thesis has been submitted for a degree or a qualification at

any other university or institution.

Name

: Mostafa Nour Eldin Mohamed AbdAllah

Signature:

Date :

iv

ACKNOWLEDGMENTS

First and foremost, praise and thanks to Almighty Allah, the Most Gracious, the Most Merciful, and peace be upon His Prophet.

I would like to express my deepest gratitude and appreciation to my supervisor, Prof. Dr. Abdelrahim Khalil Dessouki, for his invaluable guidance, support and encouragement.

I also greatly appreciate the help, guidance and support provided by Prof. Dr. Sherif Mohamed Ibrahim throughout all stages of research.

I also greatly appreciate the effort, assistance, and help provided by Prof. Dr. Emad Said Salem through the different research phases.

Finally, I would like to express my appreciation to my father, my beloved mother, my family & my friends for lots of support, specially eng. Mohamed Atia.

ABSTRACT

Bolted end plate connections in steel structures are sensitive elements, they are responsible for successfully transferring internal forces and straining actions between different parts of the structure, they form an important part of virtually all steel structures, they used to assemble fabricated elements together and to transfer straining actions among different parts of the structure safely.

Bolted end plate connections have been studied thoroughly for many years with a lot of published work and building codes recommendations, despite that, it appears that minor research has been carried out on connections with initial imperfections where the plates of the faying surface are not in full contact. Connections with initial imperfections are not uncommon, although they are present in many structures, they are somewhat hard to detect and of somewhat occasional occurrence, this could be the reason that building codes have no provisions regarding connections with initial imperfections.

The current study is interested in moment resisting, extended bolted end plate connections with initial imperfections, it consists of five main parts.

The first part is literature review discussing the lack of research in the field of initially imperfect bolted connections.

The second part is an experimental program on a group of initially imperfect connections together with their ideal counterpart for comparison, where the behaviour of such connections was measured practically and a number of observations were recorded.

The third part is a finite element modelling (FEM) parametric study, where the modelling procedure was verified using experimental results, then

various groups of connections were modelled and a number of interesting results were obtained, including analytical approach to calculate the maximum moment carrying capacity of such connections.

The fourth part is a FEM numerical study on a number of full-scale portal frames with initially imperfect connections together with their ideal counterpart, where behaviours were compared, Component Method was adjusted and utilized to calculate the rotational stiffness of imperfect connections.

The final part is a brief suggestion of dealing with structures with initially imperfect connections.

Keywords: Imperfect moment connection, initially imperfect connections, extended end plate connections, defects in pretensioned bolted connections.

Table of Contents

STAT	reme	NTIV
ACK	NOW]	LEDGMENTSV
ABST	ΓRAC'	TVI
LIST	OF F	IGURES XIV
LIST	OF S	YMBOLS XXVI
СНА	PTER	1: INTRODUCTION1
	1.1	Background1
	1.2	Research Objectives2
	1.3	Contents of the Thesis3
СНА	PTER	2: LITERATURE REVIEW5
	2.1	Introduction5
	2.2	Previous Research13
	2.3	International Building Codes for Connection Design33
	2.3.	1 American Institute of Steel Construction (AISC) Design Guides 16 & 4 34
	2.3.	2 Eurocode 3 Part 1-8: Design of joints35
	2.3.	3 Canadian Institute of Steel Construction (CISC) Moment Connections for
		Seismic Applications
	2.3.	4 Statical Equilibrium of Stresses (SEOS) Method41
СНА	PTER	3: EXPERIMENTAL PROGRAM43
	3.1	Introduction43

3.2	The Aim of the Experimental Program	43
3.3	Test Setup Choice and Specimen Layout Selection	44
3.4	Test Data	48
3.4.	1 Statical System	48
3.4.	2 Steel Beam Data	49
3.4.	3 Connection Data	52
3.5	Test procedure and equipment	55
3.5.	1 Stress Strain Curve of Bolt Material	55
3.5.	2 Bolt Strain Measurement	59
3.5.	3 Connection Rotation Measurement	63
3.6	Specimens Testing	66
3.6.	1 Laboratory Proceedings	66
3.6.	2 Loading	70
3.7	Test Results	81
3.7.	1 Failure Loads of Specimens	81
3.7.	2 Load Deflection Relationships	82
3.7.	3 Moment Rotation Relationships	83
3.7.	4 Bolt Strain Gauges Readings	84
3.7.	5 Resultant Bolts Tensile Forces and Bending Moments	93
	3.7.5.1 Planar Normal Stress Distibution Approach	93
	3.7.5.2 Linear Normal Strain Distibution Approach	96
	3.7.5.3 Observations from Bolts Strains, Forces and Moments	100
	3.7.5.3.1 Fluctuations in readings	100
	3.7.5.3.2 Bolt tension force distribution	109
	3.7.5.3.3 Bolt bending moment distribution	111
3.8	Experimental Program Conclusions	113

CHAPT	ER 4: FINITE ELEMENT MODELLING, RESULTS AND	
DISCUSS	SION	114
4. 1	1 Introduction	114
4.2	2 Modelling Procedure	115
	4.2.1 Element Type	115
	4.2.2 Discretization of the Mesh	118
	4.2.3 Material Definition in ABAQUS	119
	4.2.3.1 Steel Sections Properties Definition	119
	4.2.3.2 Bolt Material Properties Definition	121
	4.2.4 Assigning Interaction Properties Between Parts	123
	4.2.4.1 Interactions between End Plates	124
	4.2.4.2 Interactions between Bolts and End Plates	124
	4.2.5 Seeding and Meshing Parts of the Assembly	125
	4.2.6 Boundary Conditions	125
	4.2.7 Load Application	126
	4.2.7.1 Bolt Pretension	126
	4.2.7.2 External Load	126
4.3	Finite Element Modelling Verification	129
	4.3.1 Girao Coelho, Frans S.K. Bijlaard Verifiaction	129
	4.3.1.1 Description of the Experimental Program	130
	4.3.1.2 Finite Element Models	132
	4.3.1.3 Conclusion	135
	4.3.2 Gang Shi, Y. Shi, Y. Wang and Frans S.K. Bijlaard Verifiaction	135
	4.3.2.1 Description of the Experimental Program	136
	4.3.2.2 Finite Element Models	138
	4.3.2.3 Conclusion	142
	4.3.3 Verification Using Experimental Program Presented	143
	4.3.3.1 Finite Element Models	143
	4.3.3.2 FEM Comparison with Experimental	144
	4.3.3.2.1 Failure Load Values	146
	4.3.3.2.2 Load Deflection Curves	147

		4.3.3.2.3 Moment Rotation Curves	151
	4.3	.4 Verification Process Conclusion	155
	4.4	Finite Element Modelling Parametric Study	155
	4.4	.1 Parametric Study Introduction	155
	4.4	.2 Parametric Study Outlines	155
	4.4	.3 Parametric Study Results	160
		4.4.3.1 Moment Rotation Curves	165
		4.4.3.2 Load Deflection Curves	168
		4.4.3.3 Progress of Straining Actions on Bolts	173
		4.4.3.4 Model of Bolts Straining Actions	175
		4.4.3.5 Model of Bolts Straining Actions Interpretations	183
		4.4.3.5.1 Model of Bolt Tension Interpretations	183
		4.4.3.5.2 Model of Bolt Shear Interpretations	189
		4.4.3.5.3 Model of Bolt Moment Interpretations	191
	4.5	Summary	191
СНА	PTEF	R 5: EFFECT OF INITIALLY IMPERFECT CONNECTIONS	S ON
STRU	CTUR	ES	193
	5.1	General	193
	5.2	Introduction	193
	5.3	Structures Description	194
	5.3	.1 Portal Frame 1	194
		5.3.1.1 Portal Frame 1 with Ideal Connections	195
		5.3.1.2 Portal Frame 1 with Imperfect Connections	196
		5.3.1.3 Modelling Procedure	197
	5.3	.2 Portal Frame 2	203
		5.3.2.1 Portal Frame 2 with Ideal Connections	204
		5.3.2.2 Portal Frame 2 with Imperfect Connections	205
		5.3.2.3 Modelling Procedure	206
	5.3	.3 Portal Frame 3	210

	5.3.3.1 Portal Frame 3 with Ideal Connections	212
	5.3.3.2 Portal Frame 3 with Imperfect Connections	212
	5.3.3.3 Modelling Procedure	213
5.4	Acquisition of Results	218
5	.4.1 Ideal Frames	219
	5.4.1.1 Models State of Stresses	219
	5.4.1.2 Moment Rotation Diagrams	222
5	.4.2 Frames with Initially Imperfect Connections	224
	5.4.2.1 Models State of Stresses	225
	5.4.2.2 Moment Rotation Diagrams	236
	5.4.2.3 Results Summary	245
5	.4.3 Full Scale Models Observations and Conclusions	245
5	.4.4 Study Outcomes	246
	5.4.4.1 Pretensioning Effect on Frames with Imperfect Connections	246
	5.4.4.2 Effect of Initially Imperfect Connection on Glabal Behavior	of Portal
	Frames	248
	5.4.4.3 Modelling of Imperfection Effect Using Simple Finite Elem	ient
	Software Packages	252
	5.4.4.3.1 Pretensioning Stage	252
	5.4.4.3.2 External Loading Stage	253
	5.4.4.4 Estimation of Imperfect Connection Stiffness	257
	5.4.4.4.1 General	257
	5.4.4.4.2 Description of Component Method	259
	5.4.4.4.3 Application of Component Method on Imperfect	
	Connections	264
	5.4.4.4 Discussion of Component Method Application on Ir	nperfect
	Connections	270
	5.4.4.4.5 Conclusions from Component Method Application	on
	Imperfect Connections	270
5.5	Dealing with Structures with Initially Imperfect Connections	271
5	.5.1 Limits of Accepting and Rejecting the Initial Imperfection	271