

بسم الله الرحمن الرحيم

-C-02-50-2-

شبكة المعلومات الجامعية التوثيق الالكتروني والميكرونيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

بالرسالة صفحات لم ترد بالأصل

The Effect of Human Umbilical Cord Derived Mesenchymal Stem Cells on Hepatoma Cell HepG2

A THESIS

SUBMITTED FOR PH.D. DEGREE OF SCIENCE IN BIOCHEMISTRY

BY

Dina Sobhy Benyamine

M.Sc. in Biochemistry (2011) Faculty of Science - Ain Shams University

UNDER SUPERVISION OF

Prof.Dr. Shadia Abdel Hamid

Professor. of Biochemistry Faculty of Science Ain Shams University

Dr.Fatma A. Karim Abo Zahra

Associated Professor of of Molecular Biology and Tissue Culture Faculty of Medicine, Ain Shams Research Institute (MASRI), Ain Shams University

Prof.Dr.Nahla S.Hassan

Professor of Biochemistry Faculty of Science Ain Shams University

Dr. Mourad M.Heidar

Fellow of Cell Biology Oncology Diagnostic Unit Faculty of Medicine Ain Shams University

Ain Shams University Faculty of Science Biochemistry Department 2021

Acknowledgments

First and foremost, my deep praises to **God** the Most Beneficent and Merciful.

I would like to express my deepest thanks to my supervisor **Prof. Dr. Shadia Abdel hamid Fathy**, for her valuable supervision, and support through this work and above all for her moral support and motherly attitude.

I would like also to express my deepest gratitude for **Dr. Mahla S. Hassan** for her supervision, with her encouragement, continuous support, patient guidance, valuable advices and guidance at every stage of this work.

Moreover, I would like to thank **Dr. Fatma A. Abu Zahra**, I am especially grateful for her great vision in both medicine and science which provided me with excellent research supervision and scientific training.

I would like also to thank **Dr. Mourad M. Heidar**, for his expert superivison and guidance on biochemical work.

I would also like to extend Special appreciation to prof. **Dr. Thab X. Mohamed** (Department of Zoology, Faculty of Science) for his great help in my research ,his continual encouragement and generous advices in the electron microscope sector.

I would like to thank heartily **Dr. Amany M.**Maher (assistant consultant of Biochemistry and

molecular Biology, Faculty of Medicine, Ain Shams Research Institute (MASRI)) for her valued help, cirtical reading and support all the period of my research.

I would like to convey my thanks to **Dr.Soad Shaker** (Prof. Dr. of cytology and histology, Faculty of Medicine Assiut University and **Dr.Hanim** Abdel Tawab (prof. dr. of histology and cell biology in zoology department, faculty of science, Assiut University) for their generous advices, and critical reading of the electron micrographs.

My Ph.D. studies would not have been as smooth as it had been without the encouragement and support of my friends and my collagues. To all who encouraged me and support me may God bless you all.

I would like to thank my husband and my son for their encouragement.

Finally, I would like to express my sincere and heartfelt gratitude to my family for their unwavering love, unconditional support and simply their belief in me and what I do.

Dina Sobhy Benyamine

DEDICATION

Every challenging work needs selfefforts as well as guidance of elders specially God and those who are very close to my heart.

All my work I dedicate it to my lovely family: my parents, my brother and sister, whose affection, care, and encouragement make me able to achieve such success.

Along with all hard working and encouragement from my husband, my respected doctors, and precious friends.

Dina Sobhy Benyamine

DECLARATION

This thesis has not been submitted to this or any other university

Dina Sobhy Benyamine

Tist of Contents

Title	Page No.
List of Tables	
List of Figures	
List of Abbreviations	
Abstract	
Introduction	
Review of Literature	
Hepatocellular Carcinoma (HCC)	
1. Epidemiology	
2. Pathophysiology	
3. Prognosis and survival	
4. Risk factors for the development of HCC	
4.1 Environmental-related risk factors	
4.1.1 Infectious risk factors	
4.1.2 Non-infectious risk factors	
4.2 Host-/genetic-related risk factors	
4.2.1. Host-related risk factors	
4.2.2 Genetic-related risk factors	
5. Hepatocellular Carcinoma (HCC) in Egypt:	
6. Diagnosis and treatment approach	
Stem Cells	
1. Stem cell system	
2. Self-renewal	
3. Potency definition	
3.1. Totipotent stem cells	
3.2. Pluripotent stem cells	
3.3. Multipotent stem cells	
3.4. Oligopotent stem cell	30
3.5. Unipotent stem cell	31
4. Sources and types of stem cells:	
4.1. Induced pluripotent stem cells (iPSCs)	31
4.2. Bone Marrow Stem Cells (BMSCs):	33
4.3 Human Embryonic Stem Cells (hESCs)	34

Tist of Contents cont...

Title	Page No.
1 10 0 1	2.0
4.4. Mesenchymal Stem Cells	
4.5. Umbilical cord stem cell (UCSCs):	
4.5.1. History of Umbilical Cord – Mesench	•
cells (UC-MSCs)	
cells UC-MSCs	
4.5.3. Methods of Isolation of Umbilical Cor	
Mesenchymal stem cells	
4.5.4. Four compartments of UC are involved	
of MSCs:	
Hepatocellular Carcinoma Cell Line HepG2	
The effects of hMSCs biomarkers: Survivin, PCN	
Telomerase, B-catenin, and VEGF on HCC HepG	,
1. Proliferating cell nuclear antigen (PCNA):	
2. Survivin:	
3. Telomerase activity	54
4. Beta- catenin:	56
4.1. Definition:	56
4.2. Protein Structure	
4.3. Role in cell-cell adhesion	59
4.4. Stem cell renewal	
5. Vascular Endothelial Growth Factor (VEGF	•
5.1. Definition	
5.2. VEGF and Hepatocellular carcinoma	63
Materials and Methods	65
Results	
Discussion	
Summary and Conclusion	
References	
Arabic Summary	

Tist of Tables

Table No	o. Title	Page No.
Table 1:	Molecular markers in Cancer	51
Table 2:	Sequence of the primers used for r	eal-time PCR79
Table 3:	Percentage of inhibition of proliferation after the treatment conditioned media.	of co-culture and
Table 4:	Statistics Descriptive of GGT, GP'	
Table 5:	Statistics Descriptive of AFP, AL Groups.	

List of Figures

Fig.	No.	Title Page No).
Fig	1.	Largo hanatagallular garginama	
Fig.		Large hepatocellular carcinoma Universal disease burden of primary liver cancer	
Fig.		Mechanisms leading to the development of HCC	
Fig.		Therapeutic modalities used for HCC treatment	
Fig.		iPSCs in regenerative medicine	
Fig.		BMSCs in regenerative medicine	
Fig.		Embryonic stem cells in regenerative medicine	
Fig.		MSCs in regenerative medicine	
Fig.		Cross-sectional diagram of human umbilical cord	
Fig.		Various compartments of umbilical cord from	00
8'	10.	which mesenchymal stem cells can be isolated	47
Fig.	11:	Hepatocellular carcinoma HepG2	
Fig.		Based on studies of mammalian	
Fig.		Schematic illustration of the telomere and main	
8		telomerase complex components	55
Fig.	14:	Three -dimensional structure of the armadillo	
Ü		repeat region of beta-catenin	57
Fig.	15:	The structure of B-catenin (simplified)	
Fig.	16:	The moonlighting of beta-catenin	
Fig.	17:	Vascular endothelial growth factor A (VEGF A)	
Ü		protein molecule 3D	62
Fig.	18:	Various compartments of umbilical cord from	
		which mesenchymal stem cells can be isolated	66
Fig.	19:	(a) & (b) Viability of the two experimental groups	
		(co-culture conditioned media) within 24hrs,	
		48hrs and 72 hrs	95
Fig.	20:	The expression of surface biomarkers in passage	
		7 UC-MSCs	96
Fig.	21:	Percentage change of GGT, GPT and GOT	
		between MSC+HepG2 and control groups	99
Fig.	22:	Percentage change of GGT, GPT and GOT	
		between (MSC+HepG2) +HepG2 and control	
		groups	99

Tist of Figures cont...

Fig. No	. Title	Page No.
Fig. 23:	Percentage change of AFP, ALP and Alb MSC+HepG2 and control groups	
Fig. 24:	Percentage change of AFP, ALP and Alb (MSC+HepG2)+HepG2 and control group	between
Fig. 25:	Real time analysis of the expression genes in co-cultured media with HepG2	level of
Fig. 26:	Real time analysis of the expression genes in conditioned media with HepG2 of	level of
Fig. 27:	Photomicrographs showing grow mesenchymal stem cells from cord (V jelly)	th of Vharton's
Fig. 28:	Photomicrographs showing grow mesenchymal stem cells from cord (V jelly) in gemsa dye (Inverted microscope,	th of Vharton's
Fig. 29:	Photomicrographs showing grow hepatocellular carcinoma (HepG2) cul normal media (Inverted microscope, X400	th of tured in
Fig. 30:	Photomicrograph showing growth of two cells mesenchymal stem cells from the hepG2 after 3 day to make co cultur (Inverted microscope, X400)	o type of cord and ce media
Fig. 31:	Photomicrographs showing effect of commedia on hepatocellular carcinoma compared with the control (Inverted mi	nditioned (hepG2) croscope,
Fig. 32:	Y400)	o-culture (HepG2)
Fig. 33:	(Inverted microscope, X400) Electron micrograph of <i>In vitro</i> origin cells	al hepg2
Fig. 34:	Micrographs of HepG2 cells	
Fig. 35:	Electron micrograph of In vitro hepg2 cel	ls115