

بسم الله الرحمن الرحيم

-C-02-50-2-

شبكة المعلومات الجامعية التوثيق الالكتروني والميكرونيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

بالرسالة صفحات لم ترد بالأصل

Memory/Bus Arbitration in Multiple-Bus Multiprocessor Systems

Thesis submitted in accordance with the requirements of the Department of Mathematics Faculty of Science, Minufiya University

for M. Sc. degree in Computer Science

BY Sherif Said El-Etrepy

Demonstrator, Dept. of Mathematics. (Pure Mathematics & Computer Science), Faculty of Science, Minufiya University

SUPERVISORS

Prof. Dr. Fawzy Ali Torkey
Dept. of Computer Science & Engineering
Faculty of Electronic Engineering,
Minufiya University

10rkeel


Dr. Ahmed Hassan Ali Dept. of Mathematics, Faculty of Science Minufiya University

Dr. Abd EL-Aziz EL-Sherbiny
Dept. of Mathematics, Faculty of Science,

Minufiya University

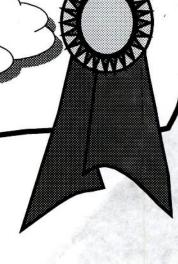
A Elshedins

وغير المؤالة التعالي المؤالة التعالي المؤالة ا

﴿وقل رب ذدنی علما﴾

صدقاللهالعظيم

To my lovely
My lifeloug
My father, my mother
My brothers, my sisters


AND TO MY WIFE

Who has spent two years from her life to stand beside me,

I APPRECIATE HER KINDNESS

ACKNOWLEDGMENT

First of all, praise and thanks to God for every thing accursed or to be accursed in my life.

To all who helped me directly or indirectly in bringing this thesis to light, I send my great appreciation and gratitude to all of them; with some special regards to:

Prof. Dr. Fawzy Ali Torkey, Professor of Computer Engineering, Department of Computer Science and Engineering, Faculty of Electronic Engineering, Minufiya University, who taught, helped and encouraged me a lot through out the days of work on the thesis, until I reached the desired standard. I cannot fulfill him his true rewards.

At the same time, I would like to present my gratitude to *Prof. Dr.* Ahmed Hassan Ali, Associate Professor of Department of Mathematics, Faculty of Science, Minufiya University, who gave me a lot of his experience, time, and support for the sake of the thesis.

I would like to express my deep appreciation to **Dr. Abd EL-Aziz EL-Sherbiny,** Department of Mathematics, Faculty of Science, Minufiya University. Who reviled every obstacle and gave me all the support that he can do to his little brother. My best wishes for him.

I want to thank my colleges Ahmed Zaid, Passent, Said, Hany, Ahmed Ghoneim and Moustafa for their help they offered. Finally, to all Professors, Lectures, and demonstrators in the Department of Mathematics and Computer Science, Faculty of Science, Minufiya University, my great appreciation and gratitude for the encouragement and help they all gave me.

Memory/Bus Arbitration in Multiple-Bus Multiprocessor Systems

M.Sc. Thesis by

Sherif Said EL-Etrepy,

Dept. of Mathematics and Computer Science, Faculty of Science, The University of Minufiya

ABSTRACT

performance and behavior of tightly-coupled multiple-bus multiprocessor systems are modeled, developed and studied in this thesis. These systems consist of P processors and M memory modules. Each processor may have its own private cache and local I/O. Processors and memory modules are interconnected via B global buses, where each bus is connected to all processors and to all memory modules. Processors communicate through the shared memory modules. Such flexibility to access shared memory causing memory access conflicts that tend to degrade system performance. In these systems, processors may also contend for the path to the memory module. A theoretical stochastic model is developed for predicting the system performance in the presence of such memory/bus conflicts. Hardware arbiters are employed to resolve memory access conflicts and to allocate the available buses. The blocked requests due to memory/bus arbitration are not ignored but resubmitted during the next memory cycle. The performance of the modeled system is, generally, measured in terms of some popular criteria, such as effective memory bandwidth and acceptance probability. Many interconnection networks have been proposed for interconnecting processors and memory modules. These range from a singlebus to a fully connected crossbar. The simplest multiprocessor system and easiest to modify is one in which all processors are connected in parallel to a single-bus and all share this communication path to the memory modules. In this type of communication, arbitration hardware must be provided to

synchronize access to these memory modules by the different processors. Finally, simultaneous requests for the bus must be executed sequentially. The this type of communication in the beginning. The thesis considers performance is evaluated in terms of the effective memory bandwidth and the acceptance probability. Simulation studies are developed especially when the amount of processor-memory traffic is large. The case studies have shown that the bus is actually the performance-limiting factor in single-bus architectures for parallel processing. When the number of buses increased to approach the value $B=\min(P,M)$, the resulting special case is the crossbar network which is suffering only from memory conflicts. Simulation studies are presented in the thesis, and the results reveal that crossbars provide a maximum degree of performance. However, they scale up linearly in terms of performance, but at the expense of an $O(P^2)$ complexity for a $P \times P$ crossbar. The general multiplebus systems, when $B \le \min(P, M)$, are considered and their performance evaluated. Such general systems are suffering from both memory conflicts and bus arbitration. They strike a compromise between the price/performance alternatives offered by crossbars. Two models are considered. They are the even priority model and the prioritized model. In the even priority model, all processors are assumed to have the same priority level and the memory requests from each processor are assumed to be random, independent and uniformaly distributed over all the memory modules.

Prioritized multiple-bus multiprocessor systems are finally considered, in which each processor is assigned a priority level. In such systems, each processor will have different acceptance probability depending on its priority. Thus, the performance of each processor can be individually evaluated. The number of global buses can always play an effective part on the system performance as indicated from the results.

TABLE OF CONTENTS

CONTENTS	Pag
TITLE PAGE	No I
DEDICATION	II
ACKNOWLEDGMENT	III
ABSTRACT	IV
TABLE OF CONTENTS	V
LIST OF FIGURES	XII
ABBREVIATIONS	XI
NOMENCLATURE	XII
	7111
CHAPTER:	
1. INTRODUCTION	1
1.1 Overview and Criteria	1
1.2 Previous Work	6
1.2 Tievious Work	U
2. SINGLE-BUS INTERCONNECTION NETWORKS	1.0
2.1 Preliminaries	18
2.2 Criteria	21
2.3 Arbitration Algorithms	23
2.4 Memory/Bus Arbitration	26
2.4.1 1-of- <i>P</i> Memory Arbiter	27
2.4.2 <i>B</i> -of- <i>M</i> Bus Arbiter	28
2.5 System Architecture	30
2.6 Analysis and Results	31
2.6.1 Without Resubmission of	
Blocked Requests	31
2.6.2 Resubmissiom of Blocked	
Requests	43
3. CROSSBAR INTERCONNECTION NETWORKS	54
3.1 Preliminaries	54
3.2 Analysis	56
3.3 Performance	65

		3.3.1 Effect of Memory Modules	65
		3.3.2 Effect of Processors	68
		3.3.3 Effect of Static Request Rate	71
4.	EVEN PI	RIORITY SYSTEMS	74
	4.1	Preliminaries	74
	4.2	Architecture	76
	4.3	Stochastic Model	80
		4.3.1 Without Resubmission of Blocked Requests	80
	×	4.3.2 With Resubmission of Blocked Requests	92
5.	DIFFER	ENT PRIORITY SYSTEMS	110
	5.1	A Prioritized Model	110
		5.1.1 Assumptions	111
		5.1.2 Analytical Model	112
	5.2	Probability of Acceptance	113
		5.2.1 Effect of New Requests	116
		5.2.2 Effect of Resubmitted	
		Requests	119
	5.3	Performance Results	120
6.	SUMMA	RY AND CONCLUSION	129
REFE	RENCES		132
APPE	NDIX A		
ARAB	BIC SUMMA	ARY	

LIST OF FIGURES

	Figures	Page
1.1	A multiprocessor system	3
2.1	A single-bus multiprocessor system	19
2.2	Bus control	23
2.3	Rotating daisy chain implementation	26
2.4	1-of-8 arbiter constructed from a tree of 1-of-2	
	arbiters	28
2.5	Iterative design for a <i>B-of-M</i> arbiter	29
2.6	A single-bus multiprocessor architecture with	
	memory/bus arbiter	30
2.7	Blocked requests	36
2.8	Algorithm to compute the performance of single-bus	
	model	39
2.9	Effect of request rate on the blocked requests in a	
	system with $P=64$, and $M=16$	40
2.10	Acceptance probability for different numbers of	
	memory modules for a system with $P=64$. $?$	41
2.11	Effect of number of processors on the acceptance	
	probability in a system with P=64, M=32	42
.12(a)	Arbitraion process??	43
.12(b)	Markov graph	44
2.13	Algorithm to compute the performance of the single-	
	bus model with resubmissiom of blocked requests	47
2.14	Effect of number of memory modules on the	
	acceptance probability in system with $P=16$ with	
	different values of static request rate	48
2.15	Effect of number of processors on the acceptance	
	probability in system with $M=12$ with different	
	values of static request rate	49
2.16	Effect of number of memory modules on the idle	
	cycle in system with $P=12$ with different values of	
	static request rate	50

2.17	Effect of number of processors on the idle cycle in			
	system with $M=12$ with different values of static			
	request rate	4		
2.18	Effect of number of memory modules on the			
	dynamic requests in system with $P=16$ with different			
	values of static request rate	4		
2.19	Effect of number of processors on the dynamic			
	request rate in system with $M=12$ for different values			
	of static request rate			
3.1	(a) Request at M_i in $N \times N$ crossbar	4		
	(b) Request at M_i in $P \times M$ crossbar with $P \ge M \dots$	4		
	(c) Request at memories in an $P \times M$ crossbar with			
	$M \ge P$			
3.2	Crossbar interconnection network			
3.3	Arbitration process for crossbar architecture			
3.4	Algorithm to compute the performance of a crossbar			
	model			
3.5	Effect of number of memory modules on acceptance			
	probability with different values of static request rate			
	in a crossbar system with $P=16$	(
3.6	Effect of number of memory modules on idle cycles			
	with different values of static request rate in a			
	crossbar system with P=16	(
3.7	Effect of number of memory modules on dynamic			
	request rate with different values of static request			
	rate in a crossbar system with $P=16$			
3.8	Effect of number of processors on the acceptance			
	probability with different values of static request rate			
	in a crossbar system with M=16	(
3.9	Effect of number of processors on idle cycle with			
	different values of static request rate in a crossbar			
	system with <i>M</i> =16	(
3.10	Effect of number of processors on dynamic request			
	rate with different values of static request rate in a			
	crossbar system with M=16	,		