

بسم الله الرحمن الرحيم

-C-02-50-2-

شبكة المعلومات الجامعية التوثيق الالكتروني والميكرونيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

بالرسالة صفحات لم ترد بالأصل

SELECTION OF SOME PROBIOTIC YEAST STRAINS AND THEIR APPLICATIONS IN SOME FOODS

By

REHAM ABDALLAH KAMEL MOHAMED

B.Sc. Agric. Sci. (Food Sciences and Technology), Fac. Agric., Ain Shams Univ., 2013

A Thesis Submitted in Partial Fulfillment Of

The Requirements for the Degree of

MASTER OF SCIENCE

in

Agricultural Sciences
(Food Sciences and Technology)

Department of Food Science
Faculty of Agriculture
Ain Shams University

Approval Sheet

SELECTION OF SOME PROBIOTIC YEAST STRAINS AND THEIR APPLICATIONS IN SOME FOODS

By

REHAM ABDALLAH KAMEL MOHAMED

B.Sc. Agric. Sci. (Food Sciences and Technology), Fac. Agric., Ain Shams Univ., 2013

Dr. Abd-Elrahman M. Khalaf-Allah Prof. Emeritus of Food Science and Technology, Faculty of Agriculture, Cairo University. Dr. Nagwa Mousa H. Rasmy Prof. Emeritus of Food Science and Technology, Faculty of Agriculture, Ain Shams University. Dr. Amal Ahmed M. Hassan Prof. Emeritus of Food Science and Technology, Faculty of Agriculture, Ain Shams University. Dr. Ibrahim Rizk Sayd Ahmed Prof. Emeritus of Food Science and Technology, Faculty of Agriculture, Ain Shams University.

Date of Examination: 27 /10 /2021

This Thesis for M.Sc. Degree has been Approved by:

SELECTION OF SOME PROBIOTIC YEAST STRAINS AND THEIR APPLICATIONS IN SOME FOODS

By

REHAM ABDALLAH KAMEL MOHAMED

B.Sc. Agric. Sci. (Food Sciences and Technology), Fac. Agric., Ain Shams Univ., 2013

Under the Supervision of:

Dr. Ibrahim Rizk Sayd Ahmed

Prof. Emeritus of Food Science and Technology, Department of Food Science, Faculty of Agriculture, Ain Shams University (supervisor).

Dr. Amal Ahmed Mohamed Hassan

Prof. Emeritus of Food Science and Technology, Department of Food Science, Faculty of Agriculture, Ain Shams University.

Dr. Hemat ElSheshetawy ElSheshetawy Ali

Prof. of Food Science and Technology, Department of Food Science, Faculty of Agriculture, Ain Shams University.

ABSTRACT

Reham Abd Allah Kamel Mohamed: Selection of Some Probiotic Yeast Strains and Their Applications in Some Foods. Unpublished M.Sc. Thesis, Department of Food Science, Faculty of Agriculture, Ain-Shams University, 2021.

The selected commercial yeast cultures *Saccharomyces boulardii* (SB1 and SB2) were identified by determining the sequence of rDNA of the ITS region for two isolated yeasts then a database search for similar sequences in the GenBank was performed using the BLASTn program. The commercial and pure yeast cultures were preserved by chilled, freezing, and drying methods. According to the obtained results, preserving the yeast cultures by freezing technique is considered the more suitable method for yeast preservation. Encapsulation technique was applied on yeast cultures before the lyophilization process to enhance the viability of lyophilized yeast cells.

Yeast cultures were subjected to probiotic microbial selection experiments. Tolerance to pH, bile salt, temperature, simulated gastrointestinal conditions in vitro, antibiotics, auto-aggregation capacity, cell surface hydrophobicity, ability to assimilate cholesterol, anticancer activity, antimicrobial activity, and antioxidant activity are the selection experiments which carried out to decide if the examined yeast strains can be considered as probiotic microorganisms.

From the obtained results, *Saccharomyces boulardii* SB1 and SB2 strains achieve the highest scores in most carried out experiments to be considered as a probiotic strains. The addition of prebiotics (inulin and lactulose) increased the viability of yeast strains under study with the increase of addition level up to 5% in particular with the strains SB1 and SB2 yeast cultures.

The tested yeast strains were used for the production of gummy candy and sweet potato puree with the addition of inulin or lactulose to the recipe of each product. The gummy candy supplemented with the strains SB1 and SB2 remained intact without the growth of fungi until the end of the storage period. In concern with texture profile, no remarkable effects of yeast strains on cohesiveness and springiness were observed for the tested candy samples. The addition of *S. boulardii* yeast with suggested prebiotic material had a positive effect on most sensory properties of sweet potato puree.

Keywords: Probiotics, Prebiotics, Yeasts, Preservation methods, Probiotic properties and Synbiotic foods.

ACKNOWLEDGEMENT

In the name of Allah, most gracious, most merciful. All praises are due to almighty Allah who granted me the ability to perform assay. I would like to express my deepest thanks, gratitude and deep appreciation to **Dr.**Ibrahim Rizk Sayd Ahmed, Professor emeritus of Food Science and Technology, Fac. of Agric., Ain Shams University, for his kind supervision, valuable guidance and beneficial advices during the present of this investigation.

Sincere thanks to **Dr. Amal Ahmed Mohamed Hassan**, Professor emeritus of Food Science and Technology, Fac. of Agric., Ain Shams University for sharing in supervision, guiding and supporting the experimental work and discussion of the obtained results.

Honest thanks, deepest gratitude and appreciation to **Dr. Hemat ElSheshtawy ElSheshtawy Ali,** Professor of Food Science and Technology, Fac. of Agric., Ain Shams University for supporting, guiding and helping of the obtained results.

Dedication to the soul of **Dr. Hussien Ahmed Abd-ElRahman**, Professor emeritus of Food Science and Technology, Fac. of Agric., Ain Shams University for his constructive help during the first of this investigation.

Deep thanks to **Dr. Yehia Abd-ElRazik Hiekal**, Professor emeritus of Food Science, Fac. of Agric., Ain Shams University for support during the practical parts of this research work and his continuous advice.

Great thanks to Microbiological Resources Centre, Cairo, Egypt (MIRCEN) for supporting the practical parts of Texture Profile Analysis. Grateful appreciation is also extended to all staff members of Food Science Department, Fac. of Agric., Ain Shams University. Special deep appreciation is given to my mother and all my family for their great understanding and support during the preparation of this thesis.

CONTENTS

		Page
LIST (OF TABLES	IV
LIST OF FIGURES		VI
LIST (OF ABBREVIATIONS	VIII
1. IN	TRODUCTION	1
2. RE	VIEW OF LITERATURE	5
2.1. Pro	obiotic yeasts	5
2.2. Pre	ebiotics	8
2.3. Ye	east preservation methods	10
2.4. Pro	obiotic properties	13
2.5. Fo	od products supplemented with probiotic and prebiotic	23
3. MA	ATERIALS AND METHODS	29
3.1. Ma	aterials	29
3.1.1.	Microbial strains	29
3.1.2.	Media, chemicals and raw materials	29
3.1.3.	Mammalian cell lines	30
3.1.4.	Antibiotic discs	30
3.2. Methods		30
3.2.1.	Isolation of Saccharomyces boulardii strains	30
3.2.2.	Identification of Saccharomyces boulardii strains	30
3.2.3.	Yeast preservation methods	31
3.2.3.1	. Chilled preservation	31
3.2.3.2	Freezing preservation	31
3.2.3.3	Drying preservation	31
3.2.3.4	. Lyophilization	31
3.2.4.	Morphological characteristics	32
3.2.5.	Injured cell	33
3.2.6.	Encapsulation	34
3.2.7.	Probiotic properties of yeasts	34
3.2.7.1	pH tolerance	34
3.2.7.2	Bile salts tolerance	34

3.2.7.3. Temperature tolerance		
3.2.7.4. Simulated gastrointestinal tract tolerance		
3.2.7.5. Autoaggregation capacity		
3.2.7.6. Cellsurface hydrophobicity		
3.2.7.7. Total cholesterol determination	36	
3.2.7.8. Antibiotic resistance	37	
3.2.7.9. Anticancer activity	37	
3.2.7.10. Antimicrobial Activity	38	
3.2.7.11. Antioxidant activity	39	
3.2.7.11.1. Radical Scavenging Activity	39	
3.2.7.11.2. Total antioxidant capacity	39	
3.2.7.11.3. Total glutathione determination	40	
3.2.8. Effect of prebiotics on yeast viability	40	
3.2.9. Food products supplemented with probiotic and	41	
prebiotic		
3.2.9.1. Gummy Candy	41	
3.2.9.1.1. Sensory attributes	42	
3.2.9.1.2. The viable yeast count	42	
3.2.9.1.3. Texture Profile parameters of the tested gummy	43	
candies		
3.2.9.2. Sweetpotato puree	43	
3.2.9.2.1. Sensory attributes	44	
3.2.9.2.2. Rheological measurements	44	
3.2.10. Statistical analysis	45	
4. RESULTS AND DISCUSSION	46	
4.1. Identification of commercial yeast cultures	46	
4.2. Yeast preservation methods	51	
4.2.1. Effect of preservation methods on viability of	51	
potential probiotic yeast cultures		
4.2.2. Effect of preservation methods on morphological	58	
characteristics of potential probiotic yeast cultures		

4.3.	Ly	ophilization and encapsulation of protentional probiotic	61
	yea	ast cultures	
4.4.	Sc	reening of yeast strains for potential probiotic properties	63
4.4.	1.	pH tolerance	63
4.4.	2.	Bile salt tolerance	68
4.4.	3.	Temperature tolerance	72
4.4.	4.	Simulated gastrointestinal tract tolerance	76
4.4.	5.	Autoaggregation capacity	87
4.4.	6.	Cellsurface hydrophobicity	90
4.4.	7.	Ability to assimilate cholesterol	95
4.4.	8.	Resistance to antibiotic	99
4.4.	9.	Anticancer activity	102
4.4.	10.	Antimicrobial activity	105
4.4.	11.	Antioxidant activity	111
4.4.	11.	1. DPPH• radical scavenging activity	112
4.4.	11.	2. Total antioxidant capacity	115
4.4.	11.	3. Total glutathione content	116
4.4.	11.	4. Bioactive compounds of yeast and antioxidant activity	118
4.5.	Eff	ect of prebiotics on yeast viability	119
4.5.	1.	Inulin	120
4.5.	2.	Lactulose	126
4.6.	Fo	od products supplemented with suggested probiotic and	130
	pre	biotic	
4.6.	1.	Gummy Candy	130
4.6.	1.1	Sensory attributes	134
4.6.	1.2	Texture Profile parameters of the tested gummy candies	141
4.6.	2.	Sweet potato puree	145
4.6.	2.1	. Sensory attributes	145
4.6.	2.2	Rheological properties of sweetpotato puree product	146
5.	SU	MMARY AND CONCLUSION	152
6.	RE	FERENCES	165
7.	AR	RABIC SUMMARY	1

LIST OF TABLES

No.		Page
1	Gummy candy formula supplemented with probiotic yeasts	42
	and prebiotic materials.	
2	Sweetpotato puree formula supplemented with lyophilized	44
	encapsulated probiotic yeast and prebiotic materials	
3	Effect of chilled preservation and storge at 5±1°C on	53
	viability of yeast cultures.	
4	Effect of freezing preservation and storge at -18 \pm 1°C on	54
	viability of yeast cultures.	
5	Effect of drying preservation and storge at 5±1°C on	56
	viability of yeast cultures.	
6	D values, viable decrement and injury cell % of different	58
	yeast cultures under different preservation methods.	
7	Morphological characteristics of different yeast cultures as	60
	affected by preservation methods.	
8	Effect of lyophilization on survival (log CFU/ml) of	62
	different noncapsulated and encapsulated stored yeast	
	strains at 5 ± 1 °C.	
9	Effect of different pH levels (1.5, 2.5, 3.5 and 4.5) and	64
	incubation times at 37 ± 1 °C on viability (log CFU/ml) of	
	different yeast strains.	
10	Effect of different pH levels (5.5, 6.5, 7.5 and 8.5) and	66
	incubation times at 37 ± 1 °C on viability (log CFU/ml) of	
	different yeast strains.	
11	Effect of different bile salt concentration and incubation	69
	times at 37 \pm 1°C on viability (log CFU/ml) of different	
	yeast strains.	
12	Effect of different temperatures and incubation times on	73
	survival (log CFU/ml) of different yeast strains (pH=5.5).	
13	Effect of gastric conditions on yeast strains viability (log	78
	CFU / ml) at 37 ± 1 °C.	