

بسم الله الرحمن الرحيم


-Call 1600-2

COEFOR COEGORIO

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

CORRECT CORRECTOR

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

-Caro-

COEFERS CARGORNOR

بعض الوثائق

الأصلية تالفة

COLEGO COLEGORIO

بالرسالة صفحات

لم ترد بالأصل

COEFECT CARGOSTON

MOLECULAR GENETIC STUDIES IN SEVERE IDIOPATHIC OLIGO., ASTHENO., TERATO ZOOSPERMIA

B16401

Thesis

Submitted to the Faculty of Medicine
University of Tanta
In partial fulfilment of the
Requirements of the degree of

Doctor in Clinical Pathology

By

Hala Mourad Ahmed Demerdash

MBBCh (Alexandria)
M.S Chemical Pathology (Alexandria)

Faculty of Medicine University of Tanta

2005

SUPERVISORS

Prof. Dr. Nabih Helal Al-Fadaly,

Professor of Clinical Pathology, Faculty of Medicine Tanta University

Prof. Dr. Moustafa Hussein,

Professor of Dermatology and Venereology, Faculty of Medicine Tanta University

Prof. Dr. Mohamed Abd El Rahman Sweilam,

Professor of Clinical Pathology, Faculty of Medicine Tanta University

Acknowledgement

I am deeply grateful to Prof. Dr. Nabih Helal El-Fadaly, Professor of Clinical Pathology, Faculty of Medicine, Canta University. For his kind supervision, sustained encouragement, unlimited efforts during the course of this study and his critical reading of the manuscripts.

I would also like to express my deepest appreciation to Prof. Dr. Moustafa Hussein, Professor and Chairman of Dermatology and Venereal disease. Faculty of Medicine, Cania University. For his endless help and kind supervision and his critical reading of the manuscripts.

I would like to express my deepest gratitude and appreciation to Prof. Dr. Mohamed Abdel Rahman Sweilam, Professor of Clinical Pathology, Faculty of Medicine, Canta University, for his helpful comments, sincere guidance, and utmost support and I want to thank him for his effort, time and patience.

My sincere appreciation is also extended to Dr. Amal Said El Bendary, Lecturer of Clinical Pathology, Faculty of Medicine, Eanta University, for her great efforts, continuous support and devoted guidance throughout this work.

Special thanks to Prof. Dr. Hisham Saleh, Assistant Professor of Gynecology and Obstetric, Faculty of Medicine, Alexandria University, for his great help in doing the research work.

Finally, 9 would like to express my thanks to all staff members and colleagues of the Department of Clinical Pathology, Faculty of Medicine, University of Canta, for their heartily cooperation.

CONTENTS

	Page
Introduction and Aim of the work	1
Subjects and Methods	54
Results	78
Discussion	119
Summary & Conclusions	136
Recommendations	140
References	141
Appendix	
Arabic summary	
Protocol	•

LIST OF ABBREVIATION

FSH Follicle stimulating hormone

LH Luteinizing hormone

ABP Androgen binding protein

Gn RH Gonadotropins releasing hormones

PAR1 and 2 Pseusoautosomal regions 1 &2

NRY Non recombining region

Yp Short arm of Y chromosome Yq Long arm of Y chromosome

STS's Sequence tagged sites

TSPY Testis specific protein, Y RBMY RNA binding motif, Y DAZ Deleted in azoospermia

CDY Chromodomain Y XKRY XK-related Y

PRY PTP- bl-related Y; protein tyrosine phosphatase blood related Y

SRY Sex determining Region Y

DFFRY Drosophila development fat facets gene
DBY Dead box polypeptide, Y chromosome

UTY Ubiquitously transcribed tetracopeptide repeat gene, Y chromosome

USP 9 Y Ubiquitin specific protease 9 Y chromosome

AZF Azoospermia factors

SCOS Sertoli's cell only syndrome

Sxr^b Deletion interval of the mouse Y chromosome short arm EIF-1AY Eukaryotic translation initiation factor 1A, Y isoform

SMCY Selected mouse c-DNA on the Y chromosome hn RNP heterogenous nuclear RNA-binding proteins

BPY122 Basic protein Y1 & 2 TT 4122 Testis transcript Y1 & 2

IHH Idiopathic hypogonadotrophic hypogonadism

ICSI Intracytoplasmic sperm injection FISH Fluorescene in situ hybridization

PCR Polymerase chain reaction

FRET probes Fluorescence resonance energy transfer probes

T Testosterone
PRL Prolactin

Introduction

INTRODUCTION & AIM OF THE WORK

INTRODUCTION And THE AIM OF THE WORK

Fertility means the reproductive potential. It is really a statistical concept with social relevance referring to the reproductive performance as measured in live births [Potts & Soleman, 1979]. Normal fertility can be defined as achieving a pregnancy within two years of regular coital exposure. Those couples who do not achieve a pregnancy within two years include the sterile, for whom there is no possibility of a natural pregnancy, and the remainder, who are subfertile. Together, these comprise the infertile. The term sterile may refer to either the male or the female, whereas the term subfertile refers to the couple [Cates & Rowe, 1987].

Infertility is a major health problem affecting 10-15% of couples seeking to have children [De Kretser & Baker, 1999]. Biologically it implies that the capacity for producing offspring is diminished; statistically it is observed as a reduction in actual numbers of offspring produced [Potts & Soleman, 1979]. A male factor can be identified in about half of these cases, sperm production is defective either qualitatively or quantitatively [Hargreave, 1994].

A significant proportion of infertile males are affected either by oligozoospermia (reduced sperm production) or azoospermia (lack of any sperm in the ejaculate). Such alterations in sperm production may be related in turn to different underlying histological pathologies, ranging from the complete absence of germ cells (Sertoli cell only syndrome) to hypospermatogenesis and maturation arrest [Cates & Rowe, 1987].

The alteration of spermatogenesis can be the consequence of many causes, such as systemic disease, cryptorchidism, endocrinal disorders,

obstruction or absence of seminal pathways, or infections. However, in up to 50% of cases, the results of semen analysis are abnormal but no cause of infertility can be found. Therapeutic approaches are limited because there is inadequate knowledge of the pathogenesis of abnormal spermatogenesis [De Kretser & Burger, 1997].

For a long time, the mammalian Y chromosome was associated with a sole function-sex determination [Burgoyne, 1998]. It is well known that it directs the undifferentiated gonad of the early embryo to form a testis. Sex reversal occurs when an individual carries a Y chromosome without a functional SRY gene because of deletion or base substitution. A second role; the control of spermatogenesis was recognized in 1976 when six infertile men were found to have partial deletions of the Y chromosome long arm [Tiepolo & Zuffardi, 1976]. With the advance of molecular cloning techniques, new genes have been isolated from the Y chromosome [Vogt et al., 1997].

The involvement of the Y chromosome in spermatogenesis is two fold. Normal spermatogenesis requires not only proper pairing between the X and Y pseudoautosomal regions, but also the products of several genes on Y chromosome long arm. Most of the deletions have been detected by polymerase chain reaction amplification of Y chromosome sequence tagged sites (STSs); a few were determined by Southern hybridization [Lahn & Page, 1997]. A majority of the reported deletions fall into three non-overlapping regions on the long arm; indicating the presence of at least three discrete spermatogenesis loci Azoospermia factor regions; AZFa, AZFb, and AZFc. The phenotypes associated with the deletions are variable [Vogt et al., 1996].

Aim of the work

The aim of this will be directed to study the following:

- 1. The role of Y chromosome microdeletions (Y chromosome long arm) in the peripheral blood lymphocytes in males with severe idiopathic oligo, astheno, teratozoospermia.
- 2. To correlate between the hormonal and seminal parameters with the Y chromosome microdeletions.

TESTIS

The two major functions of the testis are steroid hormone secretion and spermatogenesis. They are segregated anatomically, with androgen biosynthesis occurring in Leydig cells and spermatogenesis in the seminiferous tubules. The anterior pituitary participates in the control of both of these functions through its secretion of the gonadotropins (Gns), luteinizing hormone (LH) and follicle stimulating hormone (FSH) [Gharib et al., 1990]. Thus spermatogenesis is a process that requires complex interactions between different somatic and germ cells within the testis. Thus for spermatogenesis to proceed normally in the seminiferous tubules, Leydig cells and Sertoli cells, the main targets for hormone action in the testis, must receive the physiological signals generated by an intact endocrine testicular axis [Matsumoto, 1989].

Anatomy of testis:

The parenchyma of the testis is composed of large number of convoluted seminiferous tubules, each of which is a continuous loop with its convexity anteriorly, uniting with adjacent tubules posteriorly to open into the rete testis. The tightly coiled seminiferous tubules are arranged in lobules, which constitute about 80% of testicular volume in man. Seminiferous tubules are lined by germ cells and Sertoli cells around a central lumen and surrounded by peritubular myoid cells and basement membrane [Schulze & Rehdar, 1984] (Figure I).