

بسم الله الرحمن الرحيم


-Call 1600-2

COEFOR COEGORIO

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

CORRECT CORRECTOR

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

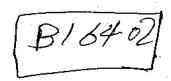
-Caro-

COEFERS CARGORNOR

بعض الوثائق

الأصلية تالفة

COLEGO COLEGORIO


بالرسالة صفحات

لم ترد بالأصل

COEFECT CARGOSTON

El-Minia University
Faculty of Eng. & Tech.
Mech. Eng. (Auto. & Trac. Dept.)

AN INVESTIGATION INTO ENGINE EXHAUST EMISSION

THESIS

Submitted in partial fulfillment of the master degree

IN

Mechanical Engineering

By

Ismail Mohamed Youssef

B. Sc Mech. Eng. (Automotive) 1989

Supervisors

Prof. Dr. Kotb Ahmed Abdel - Hakim

Prof., Auto. & Trac. Dept.

Minia University

Dr. Mohamed Mahmoud Youssef

Assistant prof., Auto. & Trac. Dept.
El-Minia University

Dr. Fawzy Mohamed Hashem

Assistant prof., Auto. & Trac. Dept.

El-Minia University

بمنم للله الرحمن الرحيم

قالوا سبحاتك لاعلم لنا إلا ماعلمتنا إنك أنت العليم الحكيم

صدق الله العظيم

البقرة ٣٢ ا

ACKNOWLEDGEMENT

The author wishes to express his deepest gratitude to prof. Dr. Kotb Ahmed Abdel-Hakim Automotive & tractors Eng. Dept., Faculty of Engineering and Technology, Minia University, for his valuable remarks and encouragement during the course of this work. Special thanks are due to Dr. Mohmed Mahmood Youssef and Dr. Fawzy Mohmed Hashiem, Faculty of Engineering and Technology, Minia University for their continuous help & advice.

Special thanks for the members of the Automotive Engineering Laboratory of the Faculty of Engineering & Technology, Minia University. Thanks are also to the energy Dept. for the kind help.

ABSTRACT

The growth in population plus the growth in energy consumption per person have combined together to give dramatic increases in air pollution problems.

The automotive vehicle has been a significant contributor to air pollution, so the advanced country governments made regulations for controlling this problem whereas the developing countries such as Egypt do not have sufficient feeling of danger.

The aim of this work was to show the importance of engine adjusting and maintenance according to the manufactures recommendations in idling mode, especially the major concentration of pollutants emitted in an idling mode.

One of the common type engines in Egypt was chosen to conduct a group of experiments to investigate the effect of some parameters belonging to engine, such as, the effect of mal adjustment of idle mixture metering screw, static spark timing, spark plug gap, contact breaker points clearance, spark plug seat, float carburettor clearance and inlet and exhaust valve clearances, on hydrocarbon (HC) and carbon monoxide (CO). Also, a comparison was carried out between HC and CO emissions for both conventional and the electronic ignition systems.

Experiments showed that deviations from the standard settings resulted in relative rates of increase in HC and CO emissions. This means an increase in pollutants in crowded streets due to neglecting maintenance and ill-adjusting.

Finally, if under- developed countries get rid of old, overworked engines, or if they install new devices of controlling emissions such as catalysts, they have to take much interest in maintenance and net adjustment of engines.

TABLE OF CONTENTS

	PAGE
ACKNOWLEDGEMENTS	iii
ABSTRACT	iv
NOMENCLATURE	ix
Chapter 1 INTRODUCTION	1
Chapter 2 SURVEY OF PUBLISHED LITERATURES	7
Chapter 3 TEST RIG	21
3-1 Measurement of air supply	22
3-1-1 Plenum chamber volume	22
3-1-2 Orifice plate meter manufacture	25
3-1-3 Manometer	26
3-2 Fuel measurements	26
3-3 Speed measurements	26
3-4 Exhaust measurements	27
3-4-1 Sampling equipment	27
3-4-1-1 Sample probe	27
3-4-1-2 Moisture absorb	27

	3-4-1-3 Primary filter	27
	3-4-2 Exhaust gas analyzer	27
Chapter 4	INSTRUMENTATIONS AND MEASURING TECHNIQUES	31
	4-1 Experimental Procedure	31
	4-2 Emissions Measurement Procedure	32
	4-3 Quantifying Emissions	32
	4-4 Procedure of air-fuel ratio adjustment	36
	4-5 Compression Pressure Test	37
Chapter 5	RESULTS OF INVESTIGATION; ANALYSIS AND DISCUS	SSION
	5-1 Effect of mixture strength on engine emissions	40
•	5-2 Effect of engine speed on engine emissions	46
	5-3 Effect of spark timing on engine emissions	51
	5-4 Effect of spark plug gaps on engine emissions	57
	5-5 Effect of contact breaker point on engine emissions	61
·	5-6 Effect of spark plug seat on engine emissions	67
	5-7 Effect of carburettor float levels on engine emissions	70
	5-8 Effect of inlet and outlet valve clearances on engine emission	ons 77
	5-9 Effect of electronic ignition system on engine emissions	79
Chapter (5 CONCLUSIONS	85
APPENI	DIX (A) Calculation of chamber volume (air box)	87
APPEN	DIX (B) Calculation of the leakage rate	89

APPENDIX (C) Calculation of air flow rate	91
REFERENCES	95
ADADIC SIMMADV	

NOMENCLATURE

Symbol	Quantity	Units
A	Cross section area of pipe	m²
A/F	Air fuel ratio	
ASC	Axially stratified charge	
BDC	Bottom dead center	
BTDC	Before top dead center	
° C	Centigrade temperature scale	
CCS	Controlled Combustion System	
со	Carbon monoxide	%
CO_2	Carbon dioxide	%
D	Pipe diameter	m²
Deg	Crank angle degree scale	
ECE	Economic Commission of Europe	
EFE	Early fuel evaporization	
EGR	Exhaust gas recirculation	
EPA	Environmental protection agency	·

$\mathbf{F}_{\mathtt{C}}$	Rate of fuel consumption	cm ³ /s
FTP	Federal test procedure	
g	Acceleration due to gravity	m/s²
h	Water level difference in manometer	m
НС	Hydrocarbon	ppm
ICEs	Internal combustion engines	
I/M	Inspection and maintenance	
L	Minimum length calculate of a cubic shape air box	Cm
M	Minimum amount of air flow rate	kg/h
m _{IEAKAGE}	Mass flow of leakage	kg/h
$M_{L\!M}$	Maximum acceptable leakage rate	kg/h
MBT	Mean best torque	kg.m
MIRA	Motor industry research association	
MMT	Methylcyclopentadienly manganese tricarbonyl	
NDIR	Nondispersive infrared	
N ₂ O	Nitrous oxide	
NO _x	Nitrogen oxides	