

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

The Effect of Routine Combined utero-ovarian and Uterine vs. Uterine Artery Ligation in Patients with Partially Separated placenta as part of Placenta Accreta Spectrum Undergoing Elective Cesarean Section

AThesis

Submitted for partial fulfillment of M.D. degree in Obstetrics & Gynecology

By

Mohamed Ibrahim Ahmed Ibrahim Abdallah

M.B.BCH.2014, M.Sc.2018 Assistant lecturer of Obstetrics and Gynecology

Under Supervision of

Prof. Dr. Magdy Hassan Kolaib

Professor of Obstetrics and Gynecology Faculty of Medicine, Ain Shams University

Assist. Prof. Amr Helmy Yehia

Assistant Professor of Obstetrics and Gynecology Faculty of Medicine, Ain Shams University

Assist. Prof. Mohamed Abd El Fattah El Senity

Assistant Professor of Obstetrics and Gynecology Faculty of Medicine, Ain Shams University

Dr. Aliaa Mohamed Maaty

Lecturer of Obstetrics and Gynecology Faculty of Medicine, Ain Shams University

Faculty of Medicine Ain Shams University 2021

First and foremost, I feel always indebted to Allah, the Most Beneficent and Merciful, who gave me the strength to accomplish this work.

My deepest gratitude to **Prof. Dr. Magdy Hassan Kolaib,** Professor of Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University, for his valuable guidance and expert supervision, in addition to his great deal of support and encouragement. I really have the honor to complete this work under his supervision.

I would like to express my great and deep appreciation and thanks to **Assist. Prof. Amr Helmy Yehia,** Assistant Professor of Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University, for his meticulous supervision, and his patience in reviewing and correcting this work.

I must express my deepest thanks to Assist. Prof. Mohamed Abd El Fattah El Senity, Lecturer of Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University, for guiding me throughout this work and for granting me much of his time. I greatly appreciate his efforts.

I can't forget to thank with all appreciation **Dr. Aliaa Mohamed Maaty**, Lecturer of Obstetrics and Gynecology, Faculty of Medicine, Ain
Shams University, whom tirelessly and freely gave comments on various drafts
of this piece of work; she was really a great support.

Special thanks to my **Parents** and all my **Family** members for their continuous encouragement, enduring me and standing by me.

Mohamed Ibrahim Ahmed Ibrahim Abdallah

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	iii
List of Figures	iv
Introduction	1
Aim of the Work	5
Review of Literature	
Placenta accreta spectrum	6
Blood Supply of the Gravid Uterus	30
Management of non-bleeding PAS	51
Patients and Methods	72
Results	88
Discussion	102
Summary	109
Conclusions	112
Recommendations	115
References	115
Arabic Summary	

List of Abbreviations

Abbr. Full-term

ACOG : American College of Obstetricians and

Gynecologists

Ang : Angiopoietin

ART : Assisted reproductive technology

CI : Confidence interval

EMT : EPITHELIAL-to-mesenchymal transition

EVT : Extravillous trophoblasts

FFP: Fresh frozen plasma

FIGO: International Federation of Gynecology and

Obstetrics

hCG: Human chorionic gonadotropin

ICD : International Statistical Classification of Diseases

INSL4: Insulin-like protein 4

IVF : In vitro fertilization

MMP : Matrix metalloproteinase

MRI : Magnetic resonance imaging

mRNA : Messenger ribonucleic acid

PAS : Placenta accreta spectrum

PRBCs: Packed red blood cells

RCOG : Royal College of Obstetricians and Gynecologists

Rh : Rhesus factor

SD : Standard deviation

sFlt-1 : Soluble fms-like tyrosine kinase 1

SOGC : Society of Obstetricians and Gynecologists of

Canada

SPSS : Statistical Package for Social Science

VEGF : Vascular endothelial growth factor

WHO: World Health Organization

List of Tables

Table No.	. Title ${\mathfrak P}$	age No.
Table (1):	Intra-placental hyper-vascularity (pow Doppler)	
Table (2):	General classification of placenta accrespectrum	
Table (3):	Demographic characteristics among the studied groups	
Table (4):	Operation duration (minutes) among the studied groups	
Table (5):	Hysterectomy among the studied group	s 91
Table (6):	Additional interventions among the studied groups	
Table (7):	Visceral injury among the studiogroups	
Table (8):	Intraoperative blood loss (mL) amonthe studied groups	_
Table (9):	Blood transfusion among the studiogroups	
Table (10):	Hemoglobin (gm/dL) among the studiogroups	
Table (11):	Hematocrit (%) among the studiogroups	
Table (12):	Postoperative hospital stay (days) amonthe studied groups	101

List of Figures

Figure No	o. Title	Page No.
Figure (1):	Histopathology of placenta a syndrome.	
Figure (2):	The blood supply to the pelvis	36
Figure (3):	Uterine and hypogastric artery liga	ation 38
Figure (4):	Arterial supply of the uterus ar ovary	
Figure (5):	Ovarian venous anatomy	42
Figure (6):	Ligation of utero-ovarian and u	
Figure (7):	Flow chart of the studied cases	88
Figure (8):	Operation duration among the s groups	
Figure (9):	Hysterectomy among the s groups	
Figure (10):	Square compression among the s groups	
Figure (11):	Cervico-isthmical among the s groups	
Figure (12):	Bladder injury among the s groups	
Figure (13):	Intraoperative blood loss amon studied groups	•
Figure (14):	Blood transfusion among the s groups	

Figure (15):	Hemoglobin drop among the studied groups	98
Figure (16):	Hematocrit drop among the studied groups	
Figure (17):	Postoperative hospital stay among the studied groups	101

Introduction

Placenta previa refers to the presence of placental tissue that extends over the internal cervical os (ACOG, 2002).

Placenta previa and placenta accreta are associated with high maternal and neonatal morbidity and mortality (*silver*, 2015).

The rates of placenta previa and accreta have increased and will continue to do so as a result of rising rates of caesarean deliveries, increased maternal age and use of assisted reproductive technology (ART) (*Bowman et al.*, 2014).

The estimated incidence of placenta previa at term is 1 in 200 pregnancies (*Silver*, *2015*).

Placenta accreta is a histopathological term first defined by Irving and Hertig in 1937, as the "abnormal adherence of the afterbirth in whole or in parts to the underlying uterine wall in the partial or complete absence of decidua" (Irving and Hertig,1937).

Depending on the depth of villous tissue invasiveness, placenta accreta was subsequently subdivided by modern pathologists into 'creta' or 'adherenta' where the villi adheres superficially to the myometrium without interposing decidua; 'increta' where the villi penetrate deeply into the uterine myometrium down to the serosa; and 'percreta'

where the villous tissue perforates through the entire uterine wall and may invade the surrounding pelvic organs, such as the bladder (*Fox et al.*, 2007).

Thus, placenta accreta is a spectrum disorder ranging from abnormally adherent to deeply invasive placental tissue (*Luke et al.*, 1996).

The current reported prevalence of placenta accreta ranges between 1 in 300 and 1 in 2000 pregnancies (*Benirschke et al.*, 2012).

A cesarean delivery is always indicated when there is sonographic evidence of placenta previa and a viable fetus (*Zosmer et al.*, 2012).

Advances in antenatal surveillance and early diagnosis have led to significant improvements in outcomes associated with placenta previa. Current surgical, anesthetic, and blood component therapeutics have also greatly improved maternal and fetal morbidity and mortality (*Lede'e et al.*, 2001).

Nonetheless, placenta previa and placenta accreta continue to present clinical challenges with many associated complications. Hemorrhage remains the major complication of abnormal placentation, often necessitating premature delivery with its own perinatal impact. Emergent surgical intervention due to hemorrhage is associated with multiple risks and may require hysterectomy to control blood loss (Kastner et al., 2002).

The blood supply of the uterus arises from the anterior division of the internal iliac artery which gives origin to the uterine artery (*Pelage et al.*, 1999).

However, complex anastomosis between the aorta and branches of the internal iliac artery ensure adequate blood supply to the uterus such as the anastomosis between the ovarian artery which is a direct branch from the aorta and the uterine artery. Ligation of these arteries can dramatically decrease the blood flow to the uterus and hence arrest bleeding (*O'Leary*, 1995).

The stepwise uterine devascularization was successful as a conservative form of surgical management of placenta previa and accrete with preserving the uterus and fertility, saving patient's life and minimizing major surgical interventions in all patients (*Palacios et al.*, 2004).

Surgical uterine de-vascularization may represent the first-line procedure to control persistent hemorrhage during a cesarean section (*Kelekci et al.*, 2015).

Optimal uterine devascularization may necessitate multiple arterial ligations; these include bilateral uterine arteries (O'Leary stitch), ovarian arteries and internal iliac arteries (Walker et al., 2013).