

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Effect of Different Treatment Modalities on Surface Roughness and Shear Bond Strength of Veneering Composite to Polyetheretherketone-based Core Materials

-An in vitro study-

A Thesis submitted for partial fulfillment of requirements of the Master's degree of science in fixed prosthodontics, crown and bridge department, Faculty of Dentistry, Ain shams university.

By

Farida Safwat Abdel-Aziz Ezzel Din

B.D.S Faculty of Dentistry, Ain Shams University (2013)
E-mail:faridasafwat@hotmail.com
Phone number: +201001275262

Faculty of Dentistry
Ain Shams University
2020

Supervisors

Dr. Marwa Mohamed El Sayed Wahsh

Assistant Professor of fixed prosthodontics, Fixed Prosthodontics

Department.

Faculty of Dentistry, Ain Shams University.

Dr. Doaa Taha Sayed Taha

Lecturer of fixed prosthodontics, Fixed Prosthodontics Department Faculty of Dentistry, Ain Shams University.

Acknowledgment

I would like to show my deep appreciation and respect to my supervisor, **Dr Marwa Wahsh**, Assistant Professor at the Fixed Prosthodontics department, Faculty of Dentistry, Ain Shams University, for her trust, warm encouragement, insightful guidance and valuable advises and suggestions that were crucial for the completion of this research.

My sincerest gratitude to **Dr Doaa Taha,** Lecturer of Fixed Prosthodontics, Faculty of Dentistry Ain Shams University for her endless support, patience, care and efforts. I'm deeply appreciative of her unwavering devotion and ingenious educational remarks provided for the execution of this work.

I would like to extend my appreciation and respect to *Dr. Tarek Salah Morsi*, Professor and Head of Fixed Prosthodontic Department, Faculty of Dentistry, Ain Shams University.

Last but not least, I wish to express my sincere thanks to all my colleagues and staff members who offered valuable support and help along the way.

Dedication

First and foremost, I'd like to express my deepest gratitude to **ALLAH**, who gave me constant strength, faith and persistence to complete this study successfully.

I would like to dedicate this to my parents for their unwavering love and support in everything I do. To my sister, **Fadila**, you are the one I truly look up to.

And last but not least to my close friends, my support system, always by my side, cheering me on.

Table of Contents

LIST OF TABLES	VII
LIST OF FIGURES	VIII
INTRODUCTION	1
REVIEW OF LITERATURE	3
STATEMENT OF PROBLEM	28
AIM OF THE STUDY	29
MATERIALS AND METHODS	30
RESULTS	50
DISCUSSION	60
SUMMARY	72
CONCLUSION	74
RECOMMENDATION	75
REFERENCES	76
ARABIC SUMMARY	

List of Tables

Table 1: Materials used in the study	30
Table 2: Chemical composition of breCAM.BioHPP	31
Table 3: Mechanical properties of breCAM.BIOHPP	32
Table 4: Chemical composition of Visio link primer	33
Table 5: Chemical composition of Scotchbond Universal adhesive	34
Table 6: Chemical composition of Visio.lign (Crea.lign)	35
Table 7: Experimental factorial design	40
Table 8: Mean ±standard deviation (SD) of surface roughness (Ra) (µm) for
PEEK samples with different surface treatments.	51
Table 9: Descriptive statistics for shear bond strength (Mpa) of P	EEK
samples to veneering composite for different surface treatments and adh	esive
systems.	52
Table 10: Effect of interaction between different surface treatments	and
different adhesive systems on the shear bond strength (Mpa) of P	EEK
samples to veneering composite.	53
Table 11: Comparison of the shear bond strength values (Mpa) of P	EEK
samples to veneering composite in all the tested subgroups.	53
Table 12: Correlation between surface roughness (Ra) and shear	bond
strength (Mpa).	55
Table 13: Frequencies (n) and Percentages (%) of mode of failure	for
different tested subgroups.	57

List of Figures

Figure 1: breCAM.BioHPP	1
Figure 2: Visio.link universal primer	3
Figure 3: Scotchbond Universal adhesive 3	4
Figure 4: Visio.lign Veneering paste	5
Figure 5 : schematic presentation of the study	6
Figure 6: IsoMet 4000	7
Figure 7: Sectioning of prefabricated PEEK blank by Isomet	7
Figure 8: a) Peek sample measuring 12x12x1mm., b) Inspection of PEER	ζ
sample width by digital caliper, c) Inspection of PEEK sample thickness b	y
digital caliper	
Figure 9: sample inside a ready-made plastic mould	9
Figure 10: Fixed sample in acrylic resin	9
Figure 11: Air abrasion unit	1
Figure 12: Air abrasion of sample perpendicular to the bonding surface at	a
10mm working distance. 4	1
Figure 13: Er:YAG with a wavelength of 2940 nm, 10Hz repetition rate and	d
1.5 W power output. 4	
Figure 14: Laser surface Treatment 4	2
Figure 15: a) Measuring of Ra (average roughness height) of a sample using	ıg
a stylus profilometer TR220.	
Figure 16: Visio link application	4
Figure 17: Scotchbond Universal application. 4	
Figure 18: Plastic tube	
Figure 19: Diagram showing plastic tube dimension (4mm height x 2mm	n
inner diameter)4	
Figure 20: Diagram showing sample with dimension	6
Figure 21: Visio.lign placed in a plastic tube located at the center of PEER	
surface. (4mm height x 2mm inner diameter)	
Figure 22: Thermal cycling simulation machine	7
Figure 23: Samples in thermocycling basket	7
Figure 24: universal test machine 4	
Figure 25: Shear bond strength test. 4	
Figure 26: Bar chart showing average surface roughness (Ra) (μm) for PEER	
samples with different surface treatments	1

Figure 27: Bar chart showing average shear bond strength (Mpa) of PEEK
samples to veneering composite for different surface treatments and
adhesives. 54
Figure 28: Scatter plot showing the correlation between surface roughness
(Ra) (µm) and shear bond strength (Mpa)
Figure 29: Bar chart showing percentage of mode of failure in different
adhesives within each surface treatment. 56
Figure 30: Pie chart representing mode of failure of all tested groups 56
Figure 31: Stereomicroscopic image of an adhesive failure of PEEK sample
to veneering composite. 59
Figure 32: Stereomicroscopic image of a mixed failure of PEEK sample to
veneering composite. 59

Introduction

High performance polymer materials are progressively used in the fabrication of restorations using the computer aided design/computer-aided (CAD/CAM) and they have been suggested as optimal alternative to ceramics due to their favorable properties. [1] Resin based materials have enhanced properties: better stress distribution, greater fracture resistance and less wear of the opposing teeth. All these assets make them an alternative choice to glass ceramics. [2]

Polyetheretherketone (PEEK) was proposed as a valuable material for dental applications due to its biocompatibility, better mechanical properties and resistance to organic and inorganic chemicals.

Its radiolucency makes it compatible with imaging techniques.

Polyetheretherketone (PEEK) is a methacrylate-free, high-performance thermoplastic polymer consisting of aromatic benzene molecules, which are connected alternately by functional ether or ketone groups. ^[2] PEEK's use in dentistry is not limited to manufacturing interim abutments, implant-supported bars, and dental implants. It may also be considered as a material for fixed partial dentures (FPDs) due to the material's improved mechanical properties. ^[4]

However, the material's optical properties and low translucency are the major concerns, excluding its use as a monolithic restoration. Thus additional veneering resin is needed for PEEK-based restorations.

Nevertheless, PEEK's chemically inert behavior indicates a possible bonding problem at the PEEK core/veneering resin interface. [5]

In order to investigate the bond strength between PEEK frameworks and resin composites, various studies have been carried out. Largely, two approaches to achieve a strong bonding between resin composite and PEEK have been the focus of recent studies: the alteration of the PEEK surface and conditioning with an adhesive system to enable the chemical interactions. [9]

A variety of surface treatments have been proposed such as air abrasion, silica coating, etching the surface with sulfuric acid or piranha.

Laser irradiation has been suggested as an alternative method for surface treatment of PEEK. Laser has been used to modify the PEEK surface for increasing roughness and wettability. Er:YAG laser is a generally used laser method for surface modification of dental materials. However, there is no consensus in the literature about the laser parameters for optimal bond strength of resin-based materials.

Surface treatments arrange the PEEK surface for micromechanical bonding to resin; however, additional adhesives are essential in establishing a strong bond between PEEK and resin. Studies showed that the combination of an adhesive system with surface treatments might enhance the bond strength because mechanical treatments provide more functional groups to which the components of adhesives can bond.

The ongoing goal of several studies has been to achieve a clinically acceptable long term adhesion between PEEK and veneering composite.