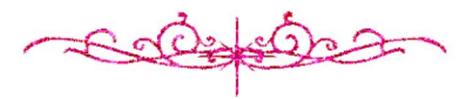


بسم الله الرحمن الرحيم


-Call 1600-2

COEFOR COEGORIO

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

CORRECT CORRECTOR

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

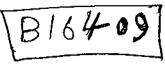
-Caro-


COEFERS CARGORNOR

بعض الوثائق

الأصلية تالفة

COLEGO COLEGORIO



بالرسالة صفحات

لم ترد بالأصل

COEFECT CARGOSTON

Cairo University

Faculty of Veterinary Medicine

Department of Microbiology

Studies On Fungi and Fungal Metabolites in Foods of Animal Origin

Thesis presented by

Nagwa EbraheemMohamed Khafaga.

(M.V.Sc Cairo University, 1995) For The degree of Ph. D.

Veterinary Medical Science

(Bacteriology, Immunology, Mycology)

Under the Supervision of

Prof. Dr. Mohamed Kamal Refai

Professor of Microbiology
Faculty of Veterinary Medicine
Cairo University

Dr. Zeinab M. Niazi

Chief Researcher

Animal Health Research Institute

Dokki-Giza

2002

Approval Sheet

This is to approve that dissertation presented by "Nagwa Ebraheem Mohamed Khafaga" for the Ph. D. of Veterinary Medical Science "Bacteriology, immunology and Mycology" has been approved by examining committee:

Prof. Dr. Helmy Ahmed El-Sayed Torky

Professor of Microbiology Faculty of Vet. Medicine Alexandria University

Prof. Dr. Kamelia Mahmoud Osman

Professor of Microbiology Faculty of Vet. Medicine Cairo University

Prof. Dr. Mohamed Kamal Refai

Professor of Microbiology Faculty of Vet. Medicine Cairo University

Refa

ACKNOWLEDGEMENT

It is a pleasure to record my deepest thanks to my God.

I wish to express my deepest thanks for Prof. Dr. Mohamed K. Refai, Professor of Microbiology, Department of Microbiology, Faculty of Veterinary Medicine, Cairo University who has expressed so much sincere care and provided so much of his time, his kind supervision, his constant encouragement and unlimited help.

My grateful appreciation and heartly thanks to Prof. Dr. Zienab M. Niazi, Deputy Director of laboratory Diagnosis and Food Hygiene, Animal Health Research Institute, for her careful guidance, advice and facilities offered.

Thanks are also due to Prof. Dr. Nagy H. Aziz, Professor of Microbiology Division Radiation center, Nasr City, for his Scientific help and assistance,

My greatest Thanks for help of Dr. El Sayed S. Shabana, research, laboratory Diagnosis and Food Hygiene, Animal Health Research Institute.

I wish also to express my deepest thanks to every body else who contributed in any way in this work.

CONTENTS

List of Tables	ii
List of Figures	v
INTRODUCTION	1
REVIEW OF LITERATURE	7
2.1. Sources of mould contamination of meat	7
2.2. Factors affecting mould growth and mycotoxin production:	11
2.3. Fungi and fungal metabolites in meat products and spices	15
2.4. Control of mould growth	30
2.5. Public health importance	42
MATERIAL AND METHODS	51
Material	51
Methods	
RESULTS	67
DISCUSSION	144
CONCLUSION & RECOMMENDATION	160
SUMMARY	162
REFERENCES	166
ARABIC SUMMARY	

List of Tables

Table (1): Incidence of moulds in examined basterma samples.	68
Table (2): Incidence of moulds in the different parts of examined basterma samples	
Table (3): Statistical analytical results of mould count in examined basterma samples	74
Table (4): Incidence of isolated mould genera in examined basterma samples.	77
Table (5): Frequency distribution of mould count/g of examined basterma samples	80
Table (6): Incidence of moulds in examined spices samples	83
Table (7): Statistical analytical results of mould count in examined spices samples	86
Table (8): Incidence of isolated mould genera in examined spices samples	89
Table (9): Frequency distribution of mould count/gm of examined spices samples.	92
Table (10): Percentage of aflatoxin residues detected in individual basterma samples	95
Table (11): Distribution of aflatoxin residues in individual basterma samples.	98
Table (12): Levels of aflatoxin residues in individual basterma samples.	. 100
Table (13): Incidence of aflatoxin residues in the individual basterma samples.	. 102
Table (14): Statistical analytical results of aflatoxin residues in the examined basterma samples.	. 105

able (15): Evaluation of the total aflatoxins residues in the examined basterma samples in view of the
recommended permissible limits of FDA
able (16): Percentage of aflatoxin residues detected in spices samples
able (17): Distribution of aflatoxin residues in examined spices samples
able (18): Levels of aflatoxin residues detected in the examined spices samples
able (19): Incidence of aflatoxin residues in the examined spices samples
able (20): Statistical analytical results of aflatoxin in the examined spices samples
able (21): Evaluation of the total aflatoxin residues in the examined spices samples in view of the recommended permissible limit of FDA.
able (22): Total mould count /g of examined basterma samples represented in factory A
able (23): Total mould count /g of examined basterma samples represented in factory B
able (24): Levels of aflatoxin residues in the examined basterma samples represented in factory A
able (25): Levels of aflatoxin residues (p.p.b.) in the examined basterma samples represented in factory B
ble (26): Total mould count /g of examined spices used for manufacture of basterma samples before and after irradiation
ble (27): Total mould count /g of basterma samples before and after potassium sorbate addition

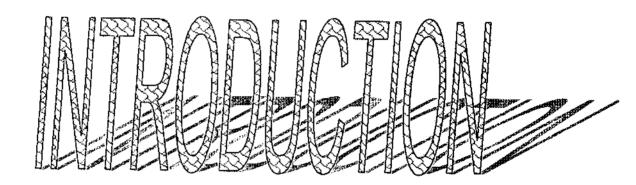

— Contents				

Table (28): Total mould count /g of basterma samples before	
and after irradiation treatment.	142

List of Figures

Fig. (1): Incidence of moulds in examined basterma samples.	69
Fig. (2): Incidence of moulds in the different parts of examined basterma samples.	72
Fig. (3): Statistical analytical results of mould counts in examined basterma samples.	75
Fig. (4): Incidence of isolated mould genera in examined basterma samples	78
Fig. (5): Frequency distribution of mould count/gm of examined basterma samples	81
Fig. (6): Incidence of moulds in examined spices samples.	84
Fig. (7): Statistical analytical results of mould count in examined spices samples	87
Fig. (8): Incidence of isolated mould genera in examined spices samples.	90
Fig. (9): Frequency distribution of mould count/gm of examined spices samples	93
Fig. (10): Percentage of aflatoxin residues detected in individual basterma samples.	96
Fig. (11): Incidence of aflatoxin residues in the individual basterma samples.	103
Fig. (12): Statistical analytical results of aflatoxins residues (ug/kg) in the examined basterma samples	106
Fig. (13): percentage of aflatoxin residues detected in spices samples.	

Fig.	(14): Incidence of aflatoxin residues in the	
	examined spices samples (ug/kg).	118
Fig.	(15): Statistical analytical results of aflatoxin	
	(μg/kg) in the examined spices samples	121
Fig.	(16): judgment of spices samples on the basis of aflatoxins in view of the permissible limit (p.l) of	
	20 p.p.b.	124
Fig.	(17): Levels of aflatoxin residues in the examined	
	samples (Factory A)	131
Fig.	(18): Levels of aflatoxin residues in the examined samples (Factory B)	134
Fig	(19): Total mould count /g of examined spices	
rig.	used for manufacture before and after irradiation	137
Fig.	(20): Total mould count /g of basterma before and	
	after potassium sorbate addition.	140
Fig.	(21): Total mould count /g of basterma before and	
	after irradiation treatment	143

