

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

LABORATORY TESTING AND NUMERICAL MODELLING OF FRAME APEX CONNECTIONS FABRICATED FROM STEEL COLD-FORMED SECTIONS

By

Mohamed Hosny Zaki Abdelrahman

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Structural Engineering

LABORATORY TESTING AND NUMERICAL MODELLING OF FRAME APEX CONNECTIONS FABRICATED FROM STEEL COLD-FORMED SECTIONS

By Mohamed Hosny Zaki Abdelrahman

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Structural Engineering

Under the Supervision of

Prof. Dr. Sherif A. Mourad	Prof. Dr. Maged T. Hanna			
Professor of Steel Structures and Bridges	Professor of Steel Structures			
Structural Engineering Department	Housing and Building National Research			
Faculty of Engineering, Cairo University	Center, HBRC			
Dr. Hazem H. Elanwar				
Assistant	Professor			
Structural Engine	ering Department			

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2021

Faculty of Engineering, Cairo University

LABORATORY TESTING AND NUMERICAL MODELLING OF FRAME APEX CONNECTIONS FABRICATED FROM STEEL COLD-FORMED **SECTIONS**

By Mohamed Hosny Zaki Abdelrahman

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE **Structural Engineering**

Approved by the **Examining Committee**

Prof. Dr. Sherif A. Mourad. Thesis Main Advisor - Professor of Steel Structures and Bridges, Cairo University Prof. Dr. Maged T. Hanna, Advisor - Professor of Steel Structures, HBRC **Internal Examiner** Prof. Dr. Hazem Mostafa Ramadan, - Professor of Steel Structures and Bridges, Cairo University Prof. Dr. Ahmed Abdelsalam El-serwi, External Examiner

- Professor of Steel Structures and Bridges, Ain Shams University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2021

Engineer's Name: Mohamed Hosny Zaki Abdelrahman

Date of Birth: 01/10/1994 **Nationality:** Egyptian

E-mail: Mohamed.Hosny@bue.edu.eg

Phone: 01010515632 **Address:** Al-Sherouk, Cairo

Registration Date:01/03/2019Awarding Date:..../..../2021Degree:Master of ScienceDepartment:Structural Engineering

Supervisors:

Prof. Dr. Sherif A. Mourad

Dr. Hazem Hossam eldin Al-Anwar

Prof. Dr. Maged T. Hanna

Examiners:

Prof. Dr. Sherif A. Mourad (Thesis main advisor)

Prof. Dr. Maged T. Hanna (Advisor)

- Professor of Steel Structures, HBRC

Prof. Dr. Hazem Mostafa Ramadan (Internal examiner)
Prof. Dr. Ahmed Abdel Salam El-serwy (External examiner)
- Professor of Steel Structures and Bridges, Ain Shams University

Title of Thesis:

LABORATORY TESTING AND NUMERICAL MODELLING OF FRAME APEX CONNECTIONS FABRICATED FROM STEEL COLD-FORMED SECTIONS

Key Words:

Cold-Formed Sections; Apex Connections; Experimental Testing; Finite Element Modelling; Self-drilling Screw Connection

Summary:

In this study, the behavior of cold formed steel portal frame apex connection subjected to major axis bending moments have been investigated. For this purpose, experimental and numerical models have been developed. Two types of fasteners have been studied. First, self-drilling screws with diameter 6mm, whereas the second type is ordinary bolts of diameter 12mm. Four specimens have been fabricated to investigate the behavior of these connections. Further, the specimens are modeled numerically using (ABAQUS) software. The model is verified by comparing its results with the experimental tests. A parametric study was conducted to investigate the effect of bolt type, gusset plate thickness, bolt number and arrangement, and the use of lower flange plate.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Mohamed Hosny Zaki Date: ../../2021

Signature:

Acknowledgments

I would like to express the deepest gratitude to my respected supervisor, **Prof. Dr. Sherif Mourad**, who gave me the honor to be one of his students. I thank him for his continuous advice and encouragement, guidance, extreme caring, and great effort to provide me with an excellent atmosphere for doing this research.

I would also like to thank my advisor, **Prof. Dr. Maged Tawfik,** for his continuous help and support in the experimental program throughout this research. With his support and precious recommendations, many obstacles in the laboratory have been overcome and many problems have been solved.

I would also like to thank my advisor, **Dr. Hazem Al-Anwar**, for his precious support, guidance, and valuable comments on my work throughout this research, especially the parts related to literature review, and analysis of results.

Also, I wish to express my sincere gratitude for **EMCON** for their huge support in fabrication and erection of test specimens, and for **HBRC** where the whole experimental program was carried out. Moreover, I would like to thank my colleague **Eng. Ahmed Massoud** for his great support and efforts in fabrication, erection, transportation, and testing of specimens. I would also like to thank my colleague **Eng. Yasser Nasr** for his support and guidance regarding numerical modelling.

Finally, I must express my gratitude to my parents and to my wife for providing me with support and continuous encouragement throughout my years of study and through the process of researching and writing this thesis.

Mohamed Hosny Zaki

Table of Contents

DISCLAIM	1ER	I
ACKNOW	LEDGMENTS	II
TABLE OF	F CONTENTS	III
LIST OF T	ABLES	V
LIST OF F	IGURES	VI
ABSTRAC'	Т	IX
CHAPTER	1: INTRODUCTION	1
1.1.	General	1
1.2.	Problem Statement	
1.3.	RESEARCH OBJECTIVES	
1.4.	RESEARCH METHODOLOGY	2
1.5.	THESIS ORGANIZATION	2
CHAPTER	2 : LITERATURE REVIEW	4
2.1.	Introduction	1
2.2.	Cold-Formed Sections	
2.3.	COLD-FORMED STEEL CONNECTIONS	
2.4.	COLD-FORMED STEEL APEX CONNECTIONS	
2.5.	Self-Drilling Screws	
2.6.	Observations	
CHAPTER	3: EXPERIMENTAL PROGRAM	16
3.1.	General	16
3.2.	EXPERIMENTAL INVESTIGATION	
3.2.1.	Specimens Description	16
3.2.2.	Fabrication of Specimens	
3.2.3.	Tensile Coupon Test	20
3.2.4.	Shear Test for Plates with Screw Connection	22
3.2.5.	Experimental Method and Devices	25
3.2.6.	Loading Techniques	26
3.3.	EXPERIMENTAL TESTING	27
3.3.1.	Preliminary Trial No. 1	27
3.3.2.	Preliminary Trial No. 2	28
3.3.3.	Preliminary Trial No. 3	29
3.3.4.	Final Test Setup	30
3.4.	EXPERIMENTAL RESULTS	32
3.4.1.	Specimen SDS1 Experimental Results	32
3.4.2.	Specimen SDS2 Experimental Results	34
3.4.3.	Specimen OB1 Experimental Results	35

3.4.4.	Specimen OB2 Experimental Results	37
3.5.	EXPERIMENTAL RESULTS COMPARISONS AND ANALYSIS	38
3.5.1.	Results comparisons	38
3.5.2.	Results analysis	40
СНАРТЕ	R 4 : NUMERICAL MODELLING	41
4.1.	General	41
4.2.	FINITE ELEMENT MODELLING OF SPECIMENS	42
4.2.1.	Element Definitions	42
4.2.2.	Material Definition	44
4.2.3.	Definition of Self-drilling screws and Bolts	
4.2.4.	Boundary Conditions and Loading	
4.3.	NUMERICAL MODELS RESULTS	
4.3.1.	Model 1 Results (Specimen SDS1)	
4.3.2.	Model 2 Results (Specimen SDS2)	
4.3.3.	Model 3 Results (Specimen OB1)	
4.3.4.	Model 4 Results (Specimen OB2)	
4.4.	NUMERICAL RESULTS COMPARISONS AND ANALYSIS	
4.5.	RESULTS VERIFICATION	
4.5.1.	Comparison of Failure Modes at Ultimate Loads	
4.5.2.	Comparisons of Load-Displacement Relationships	
CHAPTEI	R 5 : PARAMETRIC STUDY	67
5.1.	General	67
5.2.	PARAMETER NO. 1 (GUSSET PLATE THICKNESS)	68
5.3.	PARAMETER NO. 2 (NUMBER AND SPACING OF SCREWS)	73
5.4.	PARAMETER NO. 3 (REMOVAL OF LOWER FLANGE PLATE)	78
5.5.	PARAMETER No. 4 (THICKNESS OF CROSS-SECTION)	81
5.6.	PARAMETER NO. 5 (USING WELD BETWEEN PLATES)	84
5.7.	SUMMARY	88
CHAPTEI	R 6 : SUMMARY AND CONCLUSIONS	91
6.1.	General	91
6.2.	SUMMARY OF RESEARCH WORK	91
6.3.	CONCLUSIONS	92
6.4.	Future Work	93
REFEREN	NCES	94
APPENDI	X A: CROSS-SECTION MOMENT CAPACITY	96
APPENDI	X B: RELATION BETWEEN LOAD CELL VALUES AND M	OMENT
	Y OF APEX CONNECTION	
API	PENDIX C: RELATION BETWEEN DISPLACEMENT VALU	ES AND
	ON OF APEX CONNECTION	99

List of Tables

Table 3.1: Details of Test Specimens	18
Table 3.2: Tensile coupon test results	20
Table 3.3: Ultimate load and failure of four test specimens	
Table 3.4: Moment capacity and moment ratios for test specimens	39
Table 4.1: Tensile coupon test results	44
Table 4.2: Ultimate loads and failure modes of specimens (Numerical)	
Table 4.3 Moment capacity and ratios of specimens (Numerical)	
Table 4.4: Results verification summary	66
Table 5.1: Specimens used for parametric study	67
Table 5.2: Parameter no. 1 results comparison	72
Table 5.3: Parameter no. 2 results comparison	
Table 5.4: Parameter no. 3 results comparison	81
Table 5.5: Parameter no. 4 results comparison	
Table 5.6: Parametric Study results summary	

List of Figures

Figure 2.1 Test configuration [2]	5
Figure 2.2: Experimental setup [3]	5
Figure 2.3: Test specimens [4].	6
Figure 2.4: Connection configurations [6]: a) ECT-1, b) ECT-2	7
Figure 2.5: Test Setup with gusset plate configurations [7]	
Figure 2.6: Connection configurations [8]: a) eave, b) apex, c) base	9
Figure 2.7 [9]: FEM frame layout	10
Figure 2.8: Gusset plate thicknesses and bolts spacings [12]	11
Figure 2.9: Test specimens [13]	
Figure 2.10: Experimental Setup and instrumentation [16]	13
Figure 2.11: Setup of the lateral load test [21]	
Figure 3.1: Double channel BTB cold-formed section	16
Figure 3.2: Rafter details	17
Figure 3.3: Gusset plate details	17
Figure 3.4: Self-drilling screw details [18]	17
Figure 3.5: Details of initial test setup	
Figure 3.6: Connection 3D details: a) using only gusset plate, b) using upper and lo	
flange plates.	
Figure 3.7: Fabrication and erection of specimen in workshop: a) SDS1, b) SDS2,	
OB1, d) OB2	
Figure 3.8: Tensile test	20
Figure 3.9: Specimen after failure	20
Figure 3.10: Stress-strain curves: a) SP01, b) SP02, c) SP03	
Figure 3.11: Three specimens used for shear test	
Figure 3.12: Installation of specimen in testing machine	22
Figure 3.13: Shear test specimen at failure.	
Figure 3.14: Failure of shear test specimens: a) S1, b) S2, c) S3	23
Figure 3.15: Average load-displacement curve for screws	
Figure 3.16: Experimental method and devices	
Figure 3.17: Loading technique 1	
Figure 3.18: Loading technique 2	
Figure 3.19: Preliminary test trial 1	
Figure 3.20: Preliminary test trial 2	
Figure 3.21: Preliminary test trial 3	
Figure 3.22: Final test setup	
Figure 3.23: Test setup for SDS1	
Figure 3.24: Test setup for SDS2	
Figure 3.25: Test setup for OB1	
Figure 3.26: Test Setup for OB2	
Figure 3.27: Failure mode of SDS1	
Figure 3.28: Load-displacement curve for SDS1	
Figure 3.29: M/Mc vs rotation curve for SDS1	
Figure 3.30: Failure mode for SDS2	
Figure 3.31: Load-displacement curve for SDS2	
Figure 3.32: M/Mc vs rotation curve for SDS2	
Figure 3.33: Failure mode for OB1	

Figure 3.34: Load-displacement curve for OB1	.36
Figure 3.35: M/Mc vs rotation curve for OB1	.36
Figure 3.36: Failure mode for OB2	.37
Figure 3.37: Load-displacement curve for OB2	.37
Figure 3.38: M/Mc vs rotation curve for OB2	
Figure 3.39: Experimental load-displacement curves comparisons	
Figure 3.40: Experimental M/Mc vs rotation curves comparisons	
Figure 4.1: Meshed apex plate	
Figure 4.2: Meshed back-to-back cold-formed channel	
Figure 4.3: Bi-linear stress-strain curve for material definition	
Figure 4.4: Mesh-independent fastener model [1]	
Figure 4.5: Bolts defined as point-based fasteners	
Figure 4.6: Self-drilling screws defined as wires.	
Figure 4.7: Contact between gusset plate and channel cross-sections	
Figure 4.8: Coupling constraint at supports.	
Figure 4.9: Boundary condition defined at supports.	
Figure 4.10: Coupling constraint at loading points.	
Figure 4.11: Displacement controlled gravity load application.	
Figure 4.12: Stress distribution at ultimate load for SDS1	
Figure 4.13: Deformed shape of SDS1	
Figure 4.14: Deformed shape of gusset plate for SDS1	
Figure 4.15: Load-displacement relation for SDS1 (Numerical)	
Figure 4.16: M/Mc vs rotation relation for SDS1 (Numerical)	
Figure 4.17: Stress distribution for SDS2.	
Figure 4.18: Deformed shape for SDS2	
Figure 4.19: Deformation of plate: a) Upper flange plate, b) apex plate	
Figure 4.20: Load-displacement relation for SDS2 (Numerical)	
Figure 4.21: M/Mc vs rotation relation for SDS2 (Numerical)	
Figure 4.22: Stress distribution at ultimate load for OB1	
Figure 4.23: Deformed shape for OB1	
Figure 4.24: Deformed shape for gusset plate for OB1	
Figure 425. Load-displacement relation for OB1 (Numerical)	
Figure 426.: M/Mc vs rotation relation for OB1 (Numerical)	
Figure 4.27: Stress distribution at ultimate load for OB2	
Figure 4.28: Deformed shape for OB2	
Figure 4.29: Deformed shape of plate for OB2: a) Upper flange plate, b) apex plate	
Figure 4.30: Load-displacement relation for OB2 (Numerical)	
Figure 4.31: M/Mc vs rotation relation for OB2 (Numerical)	
Figure 4.32: Load-displacement relations comparison (Numerical)	
Figure 4.33 M/Mc vs rotation relations comparison (Numerical)	
Figure 4.34: Deformed shape comparison for specimen SDS1 (Experimental vs.	.00
numerical)	61
Figure 4.35: Deformed shape comparison for specimen SDS2 (Experimental vs.	.01
numerical)	62
Figure 4.36: Deformed shape comparison for specimen OB1 (Experimental vs.	.02
	62
numerical)	.02
Figure 4.37: Deformed shape comparison for specimen OB2 (Experimental vs.	62
numerical)	
Figure 4.38: Load-displacement comparison for SDS1 (Experimental vs numerical). Figure 4.39: Load-displacement comparison for SDS2 (Experimental vs numerical).	
TIRGIE 4.37. LOAG-GISDIACEMENT COMBANSON TOF SDS2 (EXDERNMENTAL VS NUMERICAL).	.04

Figure 4.40: Load-displacement comparison for OB1 (Experimental vs numerical)	65
Figure 4.41: Load-displacement comparison for OB2 (Experimental vs numerical)	65
Figure 5.1: Stress distribution and deformed shape of SDS1	68
Figure 5.2: Stress distribution and deformed shape of SDS1-1a	68
Figure 5.3: Stress distribution and deformed shape of SDS1-1b	69
Figure 5.4: Stress distribution and deformed shape of SDS1-1c	69
Figure 5.5: Load-displacement comparison (SDS1 vs SDS1-1a)	70
Figure 5.6: Load-displacement comparison (SDS1 vs SDS1-1b)	70
Figure 5.7: Load-displacement comparison (SDS1 vs SDS1-1c)	71
Figure 5.8: Load-displacement comparison for parameter no. 1	
Figure 5.9: M/Mc vs rotation comparison for parameter no. 1	72
Figure 5.10: Connection configurations for parameter 2: a) SDS1, b) SDS1-2a, c)	
SDS1-2b	73
Figure 5.11: Stress distribution and deformed shape for SDS1	74
Figure 5.12: Stress distribution and deformed shape for SDS1-2a	74
Figure 5.13: Stress distribution and deformed shape for SDS1-2b	74
Figure 5.14: Load-displacement comparison (SDS1 vs SDS1-2b)	75
Figure 5.15: Load-displacement comparison (SDS1 vs SDS1-2a)	75
Figure 5.16: Load-displacement comparison for parameter no. 2	76
Figure 5.17: M/Mc vs rotation comparison for parameter no. 2	76
Figure 5.18: Connection configuration for parameter no. 3	78
Figure 5.19: Stress distribution and deformed shape for SDS2	79
Figure 5.20: Stress distribution and deformed shape for SDS2-1	79
Figure 5.21: Load-displacement comparison (SDS2 vs SDS2-1)	80
Figure 5.22: M/Mc vs rotation comparison (SDS2 vs SDS2-1)	80
Figure 5.23: Stress distribution and deformed shape for SDS1	
Figure 5.24: Stress distribution and deformed shape for SDS1-3	82
Figure 5.25: Load-displacement comparison (SDS1 vs SDS1-3)	82
Figure 5.26: M/Mc vs rotation comparison (SDS1 vs SDS1-3)	83
Figure 5.27: Stress distribution and deformed shape: a) SDS2, b) SDS2-2	84
Figure 5.28: Load-displacement comparison for SDS2, SDS2-2	
Figure 5.29: M/Mc vs rotation comparison for SDS2, SDS2-2	85
Figure 5.30: effect of gusset plate thickness on ultimate load	88
Figure 5.31: effect of gusset plate thickness on deflection at ultimate load	88
Figure 5.32: Effect of connection configuration on ultimate load	
Figure 5.33: Effect of connection configuration on deflection at ultimate load	
Figure 5.34: Effect of cross-section thickness on ultimate load	
Figure 5.35: Effect of cross-section thickness on deflection at ultimate load	90