

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

ESTIMATION AND MODELLING OF POTATO WATER FOOTPRINT USING MACHINE LEARNING APPROACH IN NILE DELTA, EGYPT

 $\mathbf{B}\mathbf{v}$

AMAL MOHAMED ABD EL-HAMEED

B.Sc. Agric. Sci. (Agricultural Engineering), Fac. Agric., Cairo Univ., 2010 M.Sc. Agric. Sci. (Agricultural Engineering), Fac. Agric., Cairo Univ., 2016

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

In

Agricultural Sciences (Agricultural Engineering)

Department of Agricultural Engineering
Faculty of Agriculture
Cairo University
EGYPT

2021

Format Reviewer

Vice Dean of Graduate Studies

APPROVAL SHEET

ESTIMATION AND MODELLING OF POTATO WATER FOOTPRINT USING MACHINE LEARNING APPROACH IN NILE DELTA, EGYPT

Ph.D. Thesis In Agric. Sci. (Agricultural Engineering)

By

AMAL MOHAMED ABD EL-HAMEED

B.Sc. Agric. Sci. (Agricultural Engineering), Fac. Agric., Cairo Univ., 2010 M.Sc. Agric. Sci. (Agricultural Engineering), Fac. Agric., Cairo Univ., 2016

APPROVAL COMMITTEE

Dr. ABDEL-GHANY MOHAMED El-GINDY
Professor of Agricultural Engineering, Fac. Agric., Ain shams university
Dr. AHMED MAHROUS HASSAN
Professor of Agricultural Engineering, Fac. Agric., Cairo University
Dr. MOHAMED ABD EL-WAHAP KASSEM
Professor of Agricultural Engineering, Fac. Agric., Cairo University
Dr. MOHAMED EL-SAYED ABUARAB
Professor of Agricultural Engineering, Fac. Agric., Cairo University

Date: / / 2021

SUPERVISION SHEET

ESTIMATION AND MODELLING OF POTATO WATER FOOTPRINT USING MACHINE LEARNING APPROACH IN NILE DELTA, EGYPT

Ph.D. Thesis

In Agric. Sci. (Agricultural Engineering)

By

AMAL MOHAMED ABD EL-HAMEED

B.Sc. Agric. Sci. (Agricultural Engineering), Fac. Agric., Cairo Univ., 2010 M.Sc. Agric. Sci. (Agricultural Engineering), Fac. Agric., Cairo Univ., 2016

SUPERVISION COMMITTEE

Dr. MOHAMED ABD EL-WAHAP KASSEM Professor of Agricultural Engineering, Fac. Agric., Cairo University

Dr. MOHAMED EL-SAYED ABUARAB
Professor of Agricultural Engineering, Fac. Agric., Cairo University

Dr. HAZEM SAYED MEHAWED
Head Researcher of Agriculture Eng. Inst. Agric. Engineering Res.

DEDICATION

First of all, I would like to express my deepest thanks to ALLAH (God) for helping me to carry out and complete this work.

I dedicate this work to whom my heart feels thanks; to my mother, my lovely sister Eman and my brother Mohamed for their Patience, help and for all the support they lovely offered throughout the period of my post-graduation. I have no one to love more than you my lovely family.

AKNOWLEDGEMENT

First of all, thanks, from my deep heart I would like to express my thanks to **ALLAH** who made me able to accomplish this work and helped me, all persons who helped me in any way making their ways always successful and fruitful.

I wish to express my gratitude and appreciation to **Dr.**Mohamed Abd El-wahap Kassem, Professor of Agricultural Engineering, Faculty of Agriculture, Cairo University for his sincere guidance, valuable advice and stimulating supervision during the course of development of the thesis.

Also, I wish to express my deep thanks for **Dr. Mohamed EL-SAYED ABUARAB**, Professor of Agricultural Engineering, Faculty of Agriculture, Cairo University, for his great help, continuous encouragement, guidance and enormous contribution in preparing this thesis. I wish to express my appreciation, and grateful to **Dr. Hazem Sayed Mehawed**, Head of Researcher in Agriculture Engineering, Institute of Agriculture Engineering Research, for his effort, advice and numerous discussions, guidance, sincere deep help and encouragement during of this work, who supported and sustained me in build this work. Thanks for him, for considering me as his younger daughter.

I want to take the opportunity to thank them all, especially to **Dr. Ali Mokhtar**, lecturer of Agricultural Engineering, Faculty of Agriculture, Cairo University, and **Dr. Mohamed Ahmed Refai**, lecturer of Agricultural Engineering, Faculty of Agriculture, Cairo University and for them great help

I am sincerely thankful to all the **staff members** of Agricultural Engineering Research Institute (AEnRI), Dokki, Giza, Egypt. For their help and cooperation. and friendly professional help of **all the stuff** of Agricultural Engineering Department, Faculty of Agriculture, Cairo University.

LIST OF ABBREVIATIONS

Abbreviation	Meaning of abbreviation
A	Model accuracy.
ANN	Artificial neural network.
BWF	Blue water footprint (m ³ /ton).
CAPMAS	Central Agency for Public Mobilization and Statistics
CWR	Crop water requirement (m³/ha).
ET_c	Crop evapotranspiration (m³/ha).
Eto	Reference evapotranspiration (mm).
GWF	Green water footprint (m ³ /ton).
Kc	Crop coefficient.
MAE	Mean absolute error.
MAPE	Mean absolute percentage error.
MBE	Mean bias error.
ML	Machine learning.
NSE	Nash-Sutcliffe model efficiency coefficient
$\mathrm{P}_{\mathrm{eff}}$	Effective precipitation (mm/year).
\mathbb{R}^2	Coefficient of determination.
RF	Rendom forest.
RMSE	Root mean square error.
SI	Scatter index.
SM	Soil moisture.
SR	Solar radiation.
SVM	Support vactor machine.
$T_{ m Dew}$	Dew point.
T_{max}	Maximum air temperature.
T_{\min}	Minimum air temperature.
VPD	Vapor pressure deficit.
WF	Water footprint (m ³ /ton).
\mathbf{W}_{S}	Wind speed (m/s).
XGB	Xtreme gradient boost.
Y	Crop yield (ton/ha).

Name of Candidate: Amal Mohamed Degree: PhD

Title of Thesis: Estimation and modeling of potatoes water footprint using

machine learning approach in Nile Delta, Egypt.

Supervisors: Dr. Mohamed Abd EL-Wahap Kassem,

Dr. Mohamed El-Sayed Abuarab,

Dr. Hazem Sayed Mehawed.

Department: Agricultural Engineering

Branch: Approval: / /2021

ABSTRACT

Egypt suffers from water scarcity due to the increase in the population, climate change, and the lack of integrated management of water resources. Therefore, accurate evaluation of irrigation water needs for crops is urgent to achieve water management sustainability. Water footprint considers an indicator of water management sustainability. So this study investigated the impact of climate change on potato yield and water footprint in 10 governorates in the Nile Delta, Egypt during the period from 1990 to 2016. Based on the results of the BWF calculation, Three governorates were selected (Al-Gharbia, Al-Dakahlia, Al-Beheira) to develop and compare between four machine learning (SVM, RF, XGB and ANN). To select the best model in the best scenario, which achieve a high degree of accuracy and low error for predicting blue WF of potato. The results showed that, the spatial distribution of climate parameters shows that the highest precipitation was reported in Alexandria followed by Kafr El-Sheikh during winter season. On contrast, the maximum ET_C was in the south part followed by the middle governorates and the lowest located in the northern governorates. The potato water footprint in Delta Egypt decreased from 170 m³ ton⁻¹ in 1990 to 120 m³ ton⁻¹ in 2016. The blue water footprint contributes more than 75% of the total water footprint, while the green water footprint contributes less than 25%. The XGB and ANN models generated good result in estimating WF through the testing stage with high accuracy more than 90% and less errors 0.25, $R^2 = 0.90$, RMSE = 3.6 m³/t, NSE= very good, SI = Fair in the three governorates. The results demonstrated that Sc.5 with the XGB and ANN model is good enough for assessing BWFP if only vapor pressure deficit, precipitation, solar radiation, crop coefficient data are available.

Keywords: Climate change, potato yield, Water footprint, Machine learning, Food security.

CONTENTS

	Page
INTRODUCTION	1
REVIEW OF LITERATURE	5
1. Water situation in Egypt	5
2. Water management	7
3. Water footprint	7
a. Water footprint components	10
b. Water footprint for crops	11
c. Blue and green water footprint calculation	13
4. Machine learning approach	16
a. Application of Machine Learning Techniques	17
b. Types of Machine Learning	18
(1) Random Forest (RF)	21
(2) Support Vector Machines (SVM)	24
(3) Extreme Gradient Boost (XGB).	26
(4) Artificial neural network (ANN).	28
5. Potatoes crop	31
MATERIALS AND METHODS	33
1. Water footprint	33
a. The study area	33

CONTENTS (continued)

b. Data sources	35
c. Crop evapotranspiration	35
d. Water footprint calculations	37
e. Spatiotemporal analysis	38
f. Water footprint validation	39
(1) Field experiments	39
(2) Crop management and irrigation	40
2. Machine learning.	41
a. location and datasets	41
b. Machine learning approaches	42
c. Support vector	43
d. Random forest (RF)	44
e. Artificial Neural Network (ANN)	45
f. Extreme gradient Boosting (XGBoost)	47
g. Model performance	48
RSULTS AND DISCUSSIONS	52
1. Water footprint analysis	52
a. The spatiotemporal changes of climate variables (1990–2016.	52
b. Response of ET _C to climate parameters	56
c. Potato's yield variations during the 1990–2016	57
d. Spatiotemporal distribution of the agriculture water footprint	58

CONTENTS (continued)

2. Water footprint validation	67
a. Crop evapotranspiration and yield	67
b. Blue and green water footprint	68
c. Total water footprint	69
3. Machine learning models	72
a. Evaluation of the machine learning models	72
b. The accuracy of the models	78
c. Comparison of the machine learning models	81
SUMMARY AND CONCLUSIONS	86
RECOMMENDATIONS	91
REFERENCES	92
ARABIC SUMMARY	110

LIST OF TABLES

No.	Title	Page
1.	Available water resources for Egypt (billion.m ⁻³⁾	6
2.	Average total water footprint (m ³ / ton) of Egyptian crops inside and outside the Nile Valley and Delta	12
3.	The study governorates areas and geographical coordinates	34
4.	The physical properties of the experimental soil	39
5.	Chemical analysis of the experimental site	39
6.	Summary combinations of blue water footprint for the developed models	43
7.	Nash–Sutcliffe efficiency coefficient (NSE) value	49
8.	The range of the scatter index SI	51
9.	Potatoes evapotranspiration during the two growing seasons	67
10.	Potatoes yield during the two growing seasons	68
11.	Performance metrics of the model applied for the blue water footprint	76

LIST OF FIGURES

No	Title	
• 1.	Average total water footprint values (m3/ton) for different crops in Egypt (1995–2006)	Page
2.	Machine Learning Supervise Process	20
3.	Random forest	21
4.	Support vector machine	25
5.	The typical Artificial Neural Network	29
6.	Artificial Neural Network architecture	30
7.	Study area location with meteorological stations	33
8.	The highest governorates in potato production during the period 1990-2016	41
9.	The temporal changes of a) effective precipitation, b) min. temperature, c) max. temperatures, d) wind speed,	
10.	e) relative humidity and f) crop evapotranspiration The spatial distribution of a) effective precipitation, b) max. temperatures, c) min. temperature, d) wind speed,	54
11.	e) relative humidity and f) crop evapotranspiration	55 57
12.	Time evolution of the potato's yield at the 10	
13.	governorates during the 1990–2016	59 60
14.	Agriculture water footprint (BWF and GWF) and its composition during the period from 1990-2016	62
15.	Composition of the agriculture water footprint during the period from 1990-2016	62