

بسم الله الرحمن الرحيم

-C-02-50-2-

شبكة المعلومات الجامعية التوثيق الالكتروني والميكرونيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

بالرسالة صفحات لم ترد بالأصل

B 17 760

Menoufiya University
Faculty of Engineering at Shebein El Kom
Electrical Engineering Department

LOAD MANAGEMENT EFFECTS ON LOAD PROFILE FOR ELECTRICAL POWER SYSTEMS

A Thesis submitted by
Eng. Salem Abd El-Aziz Fikrey
For the Award of Master of Science Degree in
Electrical Engineering

Supervised by:

Prof. Dr. Adel Ali Abou El-Ela

Professor of Electrical Power Systems Electrical Engineering Department Menoufiya University Dr. Shaher Anis Mahmoud

General Director of Energy Conservation Department Egyptian Electricity Holding Company

Syrs

Mi Moshertoet

2006

Menoufiya University
Faculty of Engineering at Shebein El Kom
Electrical Engineering Department

LOAD MANAGEMENT EFFECTS ON LOAD PROFILE FOR ELECTRICAL POWER SYSTEMS

A Thesis submitted by

Eng. Salem Abd El-Aziz Fikrey

For the Award of Master of Science Degree in

Electrical Engineering

Approved by:

Prof. Dr. Abd El - Mohsen Mohammed Kinawy

Professor of Electrical Power Systems- Electrical Engineering Department
Faculty of Engineering - Menoufiya University

Dr . Ibrahim Yassin MahmoudFirst Under Secretary of State
Ministry of Electricity and Energy –Cairo

Prof. Dr. Adel Ali Abou El-Ela (Supervision) ABOU EL-ELA Professor of Electrical Power Systems- Electrical Engineering Department Faculty of Engineering - Menoufiya University

ABSTRACT

ABSTRACT

In the last years, the growing electricity demands for the large industrial customers resulted in the increase of the total electricity demand during the power system peak load period.

Demand Side Management (DSM) is used to make changes in utility's load shape in order to achieve a balance between the utility's power capacities and customer needs, while taking into account the economic considerations.

There are five strategies of load shape objectives; peak clipping, valley filling, load shifting, load building and strategic conservation. Industrial load management (ILM) involves the use of any or a combination of the listed first four objectives.

The target of this thesis is to evaluate the potential and impacts of load management when applied at large industrial customers representing different industrial subsectors in Egypt.

The thesis starts with a review of the previous studies on the load management theory, impacts and applications.

A full analysis of the Egyptian power system load profile during the period 1998-2001 is presented. This analysis takes in account the monthly, seasonal, day type and hourly variations.

The potential of peak clipping and load shifting for the large industrial customers supplied at extra-high voltage (EHV) and high voltage (HV) levels is evaluated.

In addition, the impacts of the employed ILM techniques on the power system load profile are provided.

Lastly, the economic evaluation of the ILM applications in terms of the avoided capacity costs, avoided energy costs, energy saving, fuel saving and total financial saving is presented.

Based on the contents of this thesis, the following paper has been published:

Sh. A. Mahmoud, Abo El-Ela and S. El-Sheikh, "Potential and impacts of industrial load management in Egypt", 40th International University Power Engineering Conference (UPEC'2005), cork, Ireland, Sept. 2005.

LIST OF CONTENTS

Table of Contents

Contents

		Page
Acknowledgment		
Abstract		
Table of Contents		iv
List of Tables		
List of Figures		xiv
List of Symbols		xvii
CHAPTER 1: INTRODUCTION		
1.1	Background	1
1.2	Objectives of the Present Work	1
1.3	Contents of Thesis	2
CHAPTER 2: LITERATURE REVIEW		
2.1	Introduction	3
2.2	Concept and Strategies of Demand Side Management	3
2.3	Benefits of Demand Side Management	9
2.4	Load Surveying and Analysis	11
2.5	Load Models Used in Load Management Studies and Applications	13
2.6	Load Control and Management	19
2.7	Impact of Load Management on Reliability	25
2.8	Load Management Economics	30
2.9	Electricity Pricing and Load Management	34
2.10	Integration of Supply-Side and Demand-Side Resources	38
CHA	APTER 3: ANALYSIS OF POWER SYSTEM LOAD PROFILE	43
3.1 I	ntroduction	43
3.2 N	Monthly Maximum Load Analysis	44
3.3 Hourly Average Load Analysis		44
3.3.1 Analysis in terms of MW		44
3.3.2 Analysis in terms of per unit		48
3.3.3	Percentage variation of hourly average loading	53
3.4	Main Indicators of Load Variation for Different Representive Profiles	59

3.4.1	Percentage load increase above average	59
3.4.2	Percentage load reduction below average	59
3.4.3	Percentage load swing	63
3.5	Estimation of Daily Peak and Valley Periods	63
3.6	Conclusion	67
СНА	PTER 4: ELECTRICITY CONSUMPTION PATTERNS AND LOAD	69
	MANAGEMENT POTENTIAL IN THE INDUSTRIAL	
	SECTOR	
4.1 Ir	ntroduction	69
4.2	Basic Electricity Demand Data for Industrial Customers Supplied at	69
	EHV and HV levels	
4.3	Estimated Values of Load Factor and Coincidence Factor for Selected	75
	Industrial Subsectors	
4.4	Limits of Sectoral Load at System Peak Time for Selected Industrial	75
	Subsectors Based on Sample Load Profiles	
4.4.1	Upper limit of sectoral load at system peak time for selected	77
	industrial subsectors	
4.4.2	Lower limit of sectoral load at system peak time for selected	77
	industrial subsectors	
4.4.3	Average value of sectoral load at system peak time for selected	77
	industrial subsectors	
4.4.4	Estimated Values for Overloading Limits	80
4.5	Clipped Load and Energy at Different Industrial Subsectors	80
4.5.1	Case 1: Clipped load representing 100% of over loading limit	80
4.5.2	Case 2: Clipped load representing 75 % of over loading limit	82
4.5.3	Case 3: Clipped load representing 50 % of over loading limit	82
4.5.4	Case 4: Clipped load representing 25 % of over loading limit	82
4.6	Shifted Load and Energy at Different Industrial Subsectors	85
4.6.1	Case 1: Shifted load representing 100 % of over loading limit	85
4.6.2	Case 2: Shifted load representing 75 % of over loading limit	85
4.6.3	Case 3: Shifted load representing 50 % of over loading limit	87
4.6.4	Case 4: Shifted load representing 25 % of over loading limit	87

4.7	Conclusion	89
CHA	PTER 5: IMPACT OF INDUSTRIAL LOAD MANAGEMENT	90
	APPLICATIONS ON THE NATIONAL POWER	
	SYSTEM LOAD PROFILES	
5.1 In	ntroduction	90
5.2	Load and Energy Impacts Due to Peak Clipping Technique Applied	91
	at Target Industrial Subsectors	
5.2.1	Case 1: Consideration of 100% of peak clipping potential	91
5.2.2	Case 2: Consideration of 75 % of peak clipping potential	93
5.2.3	Case 3: Consideration of 50% of peak clipping potential	93
5.2.4	Case 4: Consideration of 25 % of peak clipping potential	93
5.3	Estimated Average Loading for Winter Weekdays Before and After	93
	Peak Clipping	
5.3.1	Case 1: Consideration of 100% of peak clipping potential	97
5.3.2	Case 2: Consideration of 75 % of peak clipping potential	97
5.3.3	Case 3: Consideration of 50% of peak clipping potential	97
5.3.4	Case 4: Consideration of 25 % of peak clipping potential	97
5.4	Estimated Average Loading for Summer Weekdays Before and After	101
	Peak Clipping	
5.4.1	Case 1: Consideration of 100% of peak clipping potential	101
5.4.2	Case 2: Consideration of 75 % of peak clipping potential	101
5.4.3	Case 3: Consideration of 50% of peak clipping potential	101
5.4.4	Case 4: Consideration of 25 % of peak clipping potential	
5.5	Estimated Annual Average Loading for Weekdays Before and After	102
	Peak Clipping	102
5.5.1	Case 1: Consideration of 100% of peak clipping potential	102
5.5.2	Case 2: Consideration of 75 % of peak clipping potential	102
5.5.3	Case 3: Consideration of 50% of peak clipping potential	107
5.5.4	Case 4: Consideration of 25 % of peak clipping potential	107
5.6	Load and Energy Impacts Due to Load Shifting Technique Applied	107
	at Target Industrial Subsectors	
561	Case 1: Consideration of 100% of load shifting potential	107

5.6.2 Case 2: Consideration of 75 % of load shifting potential	110
5.6.3 Case 3: Consideration of 50 % of load shifting potential	110
5.6.4 Case 4: Consideration of 25 % of load shifting potential	110
5.7 Estimated Average Loading for Winter Weekdays Before and After	114
Load Shifting	
5.7.1 Case 1: Consideration of 100% of load shifting potential	114
5.7.2 Case 2: Consideration of 75 % of load shifting potential	114
5.7.3 Case 3: Consideration of 50 % of load shifting potential	114
5.7.4 Case 4: Consideration of 25 % of load shifting potential	117
5.8 Estimated Average Loading for Summer Weekdays Before and After	117
Load Shifting	
5.8.1 Case 1: Consideration of 100% of load shifting potential	117
5.8.2 Case 2: Consideration of 75 % of load shifting potential	119
5.8.3 Case 3: Consideration of 50 % of load shifting potential	119
5.8.4 Case 4: Consideration of 25 % of load shifting potential	119
5.9 Estimated Annual Average Loading for Weekdays Before and After	119
Load Shifting	
5.9.1 Case 1: Consideration of 100% of load shifting potential	122
5.9.2 Case 2: Consideration of 75 % of load shifting potential	122
5.9.3 Case 3: Consideration of 50 % of load shifting potential	122
5.9.4 Case 4: Consideration of 25 % of load shifting potential	122
5.10 Conclusion	125
CHAPTER 6: ECONOMIC EVALUATION OF INDUSTRIAL LOAD	126
MANAGEMENT APPLICATIONS	
6.1 Introduction	126
6.2 Estimated Saved Energy, Saved Fuel and Financial Saving Due to Peak	127
Clipping Technique Applied at Target Industrial Subsectors	
6.2.1 Case 1: Consideration of 100% of peak clipping potential	127
6.2.2 Case 2: Consideration of 75 % of peak clipping potential	128
6.2.3 Case 3: Consideration of 50% of peak clipping potential	128
6.2.4 Case 4: Consideration of 25 % of peak clipping potential	128