

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Effect of Osseodensification Implant Site Preparation Technique on the Primary Stability of Implant Retained Maxillary Overdentures

A thesis submitted to Prosthodontics Department
Faculty of Dentistry Ain Shams University for partial
fulfillment of the requirements for master's degree in
Oral and Maxillofacial Prosthodontics

Presented by

Sarah Hassan Mohamed Salah El Din Aref

BDS 2014

Faculty of Dentistry, Ain Shams University

Faculty of Dentistry
Ain Shams University
2021

Supervisors

Prof. Dr. Ahmed Mohamed Osama

Professor of the Oral and Maxillofacial Prosthodontics

Faculty of Dentistry - Ain Shams University

Dr. Shaimaa Lotfy Mohamed

Associate professor of the Oral and Maxillofacial Prosthodontics

Faculty of Dentistry - Ain Shams University

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to **ALLAH**, the

Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Ahmed Mohamed Osama**, Professor of the Oral and Maxillofacial Prosthodontics, Faculty of Dentistry - Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to Dr. Shaimaa Lotfy Mohamed, Associate professor of the Oral and Maxillofacial Prosthodontics, Faculty of Dentistry - Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

List of Contents

Title	Page No.
List of Figures	i
List of Tables	iv
Introduction	1
Review of Literature	3
I- Impact of edentulism	3
II- Treatment options for completely edentulous arches	6
1- Conventional complete denture	6
Problems with conventional complete denture	6
2. Implant supported-retained prosthesis	7
Challenges of implants in edentulous maxilla	8
III- Prosthetic options of implants prosthesis in edentulous	s maxilla 11
1-Implant supported fixed prosthesis	11
2-Implant overdentures	13
A. Implant supported overdenture	14
B. The implant retained overdenture	15
Advantages of implants overdentres	16
Disadvantages of implant overdentures	18
IV- Effect of drilling technique on the osseointegration	21
V- Methods of bone condensation	23
1-Osteotome technique	24

2-Piezoelectric technique	25
3-Bone expander technique	26
4- Osseodensification technique by Densah burs	28
VI- Primary stability	31
Methods of assessment of primary stability	31
1-The surgeon's perception	32
2-Imaging techniques	32
3-Cutting torque resistance analysis	33
4-Insertion torque measurement	34
5-Periotest	34
6-Resonance frequency analysis(RFA)	35
Aim of the Study	39
Materials and Methods	40
Results	67
Discussion	69
Summary	80
Conclusion	82
Recommendations	83
References	84
Arabic Summary	

List of Figures

Fig. No.	Title Page No			
Fig. (1):	Edentulous maxilla			
Fig. (2):	Upper and lower primary impressions using alginate material			
Fig. (3):	Evaluation of interocclusal distance4			
Fig. (4):	Upper and lower secondary impressions using ZNO/Eugenol material			
Fig. (5):	A-Centric relation record with bite blue registration material, B-maxillary facebow record			
Fig. (6):	Try in of denture bases inside patient's mouth4			
Fig. (7):	Delivery of the denture4			
Fig. (8):	CBCT of patient with radiographic stent49			
Fig. (9):	A-Implant capsule.,B Implant coverError! Bookmark not de			
Fig. (10):	Pilot drill through surgical stent			
Fig. (11):	Full arch crystal incision with two vertical incisions52			
Fig. (12):	Flap reflection			
Fig. (13):	Densah bur kit54			
Fig. (14):	Densah bur implant protocol for tapered implants5			
Fig. (15):	Narrowest drill (VT1525), Narrowest diameter in anticlockwise direction			

List of Figures Cont...

Fig. No.	Title	Page No.	
Fig. (16):	Sequential drilling with larger drill in diame	eter	
	(vt2535)	56	
Fig. (17):	Implant used in hand mount implant.		
Fig. (18):	Implant inserted using ratchet wrench57		
Fig. (19):	. (19): Implant fully seated in the osseodensified		
	osteotomy	58	
Fig. (20):	Surgical kit.		
Fig. (21):	Four implants fully seated in the preparation	red	
	osteotomies.	59	
Fig. (22):	A-smart peg, B-Osstell probe, C-reading	of	
	measurement.	60	
Fig. (23):	Cover screw.	61	
Fig. (24):	Implants covered by cover screws61		
Fig. (25):	Flap sutured in continuous with lock pattern62		
Fig. (26):	Ball abutments screwed		
Fig. (27):	undercuts blocked block out shims62		
Fig. (28):	recess made in the fitting surface to make room for		
	the housing.	64	
Fig (29): M	letal housings mounted on the ball abutments	63	

List of Figures Cont...

Fig. No.	Title	Page No.	
Fig. (30):	Metal housing & retentive caps picked up in the		
	denture	65	
Fig. (31):	Denture in occlusion.	65	
Fig. (32):	Bar chart showing average primary stability	in	
	different groups	68	

List of Tables

Table No) .	Title	Page No.
Table (1):	Mean ± standard	deviation (SD) of primary	stability
	for groups		67

Introduction

Tooth loss has negative effects on essential oral function, as well as the social aspects of dental health. Oral disease and edentulism are common problems, making treatment and its consequences for quality of life a chief concern when assessing patient's overall health status.

In the last 30 years, dental implant-based treatments have become a valuable treatment option for completely edentulous patients as an alternative to conventional dentures. The therapeutic options are various, including from rehabilitation involving numbers of implants, to a more minimal option represented by implant overdentures. Implant rehabilitation of the edentulous maxilla remains one of the most complex restorative challenges because of the number of variables that affect both the aesthetic and functional aspect of the prosthesis.

Biomechanical capabilities of implants are affected by various factors, which include implant macro/microgeometry, nano-surface modifications, and osteotomy techniques. Conventional extractional technique employed a standard drill to excavate bone and facilitate implant placement. They produce effective cutting of bone but lack the design capability to create a precise circumferential osteotomy, which leads to a reduction of torque during implant insertion, poor primary stability and contributing to the potential for non-integration of the implant.

Osseodensification is a novel bio-mechanical site preparation technique. It produces low plastic deformation due to its non-extraction site preparation method, which preserves the bone to enhance the host. It utilizes a multi-fluted Densifying Bur technology (Densah bur) that creates and expands a pilot hole without excavating significant amounts of

bone tissue through a unique, highly controllable, fast, and efficient procedure with minimal heat elevation. The taper design allows the surgeon to modulate pressure and irrigation, while providing unique real-time haptic feedback that makes the Densifying Bur intuitive for every skilled implant surgeon.

Osseointegration is a prerequisite for successful implant treatment. Primary implant stability has been acknowledged as an essential criterion for later achievement of such osseointegration. Implant stability can be defined as the absence of clinical mobility under a specific load, which depends on the contact between implant surface and the bone surrounding the implant. Recently a non-invasive method called resonance frequency analysis (RFA) has been introduced for the assessment of the implant stability and Osstell is resonance frequency device published by Meredith. RFA has been reported to be a reliable, reproducible, and objective method to measure the stiffness of bone-implant-complex.

So, this study was conducted to evaluate the effect of osseodensification drilling technique on the primary stability of implant retained maxillary overdenture.