

بسم الله الرحمن الرحيم

-C-02-50-2-

شبكة المعلومات الجامعية التوثيق الالكتروني والميكرونيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

بالرسالة صفحات لم ترد بالأصل

EFFECT OF SOME AGRICULTURAL TREATMENTS ON THE GROWTH AND CHEMICAL COMPOSITION OF SOME WOODY TREE SEEDLINGS

BIZYZC

Presented By

Ramadan Mohamed Mohamed Sayed

B.Sc. Agric., Fac. of Agric., Minia Univ. (1987) M.Sc. Floriculture, Fac. of Agric., Minia Univ. (1993)

DISSERTATION

Submitted in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

IN

HORTICULTURE (FLORICULATURE and FORESTRY)

Horticulture Dept., Ornamental Plants Division Fac. of Agric., Minia Univ.

Supervised By

Farouk S. Badran, Ph.D.

Prof. of Ornamental Plants Fac. of Agric., Minia Univ.

Mohamed K. Aly, Ph. D.

Prof. of Ornamental Plants Fac. of Agric., Minia Univ.

Ahmed M. Abd-El-Dayem, Ph.D.

Prof. of Forestry Hort. Research Inst., Ministry of Agric.

Emad El-Dean T. Ahmed, Ph.D.

Assoc. Prof. of Ornamental Plants Fac. of Agric., Minia Univ.

Examined By

Tarek M. El-Keiy, Ph.D.

Prof. of Flowers and Ornamental Plants and Dean of Fac. Of Agric., Alexandria Univ.

Eid M. Koriesh, Ph.D.

Prof. of Ornamental Plants Head of Hort. Dept., Fac. of Agric., Suez Canal Univ.

Ahmed M. Abd-El-Dayem, Ph.D.

Prof. of Forestry Hort. Research Inst., Ministry of Agric.

Farouk S. Badran, Ph.D.

Prof. of Ornamental Plants Fac. of Agric., Minia Univ.

APPROVAL SHEET

NAME: Ramadan Mohamed Mohamed Sayed

TITLE: Effect of some agricultural treatments on the growth and chemical composition of some woody tree seedlings.

This Dissertation for the Ph.D. Degree has been Approved by:

Ceid M. Koriel

Formal S. Bach

Committee in Charge

Date : 4, 2001.

ACKNOWLEDGEMENT

ACKNOWLEDGMENTS

At first, at last and always, it is the author's duty to be thankful to **ALLAH**, the most gracious, most merciful for the help and guidance during the course of this work.

The author wishes to express his sincere appreciation and deepest gratitude to Prof. Dr. Farouk S. Badran, Professor of Floriculture and landscape Design, Dept. of Horticulture, Fac. of Agriculture, Minia University, for his kind supervision, suggestion of problem and invaluable guidance during the execution of the field and lab work, as well as, his efficient and great help in preparing and revising the manuscript.

He would like to acknowledge Prof. Dr. Mohamed K. Aly Professor of Floriculture, Dept. of Horticulture, Fac. of Agriculture, Minia University, for his kind supervision, constant help and encouragement and constructive criticism. Special and deep appreciation is also expressed to Prof. Dr. Ahmed M. Abdel-Dayem Professor and Head of Forestry Dept. Horticulture Research Institute, Agriculture Research Center for supplying plant materials continuous encouragement and great help throughout the field and lab work. He is very cincere to Dr. Emad El-Deen T. Ahmed, associate Professor of Floriculture, Dept. of Horticulture, Fac. of Agriculture, Minia University, for his kind supervision, encouragement and help.

The author wishes also to express his gratitude to all staff members and technicians in Horticulture Dept. and Floriculture Division, Fac. of Agric., Minia Univ., as well as, staff members of Forestry Dept., Horticulture Research Institute and staff members of Forestry and Wood

Technology Dept., Fac. of Agric., Alexandria Univ. Special thanks are due also to Dr. Megahed Mabrouk, and the staff members of Kom-Ombo Research Station and to Dr. Ahmed Abo-Doh. and staff members of Botanical Garden in Aswan who offered all possible help and facilities.

Finely, special thanks are due to my parents, my wife and my kids Mohamed and May who offered me great help, continuous encouragement and long-lasting patience.

CONTENTS

	Page
INTRODUCTION	1
REVIEW OF LITERATURE	3
I. Effect of NPK Fertilization	3
A. Vegetative growth characters	3
B. Chemical constituents	9
C. Wood properties	14
II. Effect of Microelements	17
A. Vegetative growth characters	17
B. Chemical constituents	18
III. Effect of Irrigation.	19
A. Vegetative growth characters	19
B. Chemical constituents	21
IV. Effect of Gibberellic Acid	21
A. Vegetative growth characters	21
B. Chemical constituents	24
MATERIALS AND METHODS	27

	Page
RESULTS AND DISCUSSION	32
FIRST EXPERIMENT	32
I- Vegetative Growth Characters	32
1- Plant height	32
2- Stem diameter at soil surface	33
3- Stem diameter 10 cm above soil surface	34
4- Stem fresh and dry weights	35
5- Leaf area	36
6- Leaves fresh and dry weights	37
7- Root length	39
8- Root fresh and dry weights	40
II- Chemical Constituents	42
1- Leaves contents of chlorophyll a and b and carotenoids	42
2- Leaves contents of reducing and total sugars	43
3- Leaves percentage of Nitrogen, Phosphorus and Potassium	44
4- Leaves uptake of Nitrogen, Phosphorus and Potassium	45
III- Wood Properties	47
1- Fiber length	47
2- Specific gravity	47
3- Moisture percentage	48
4- Leaves and wood extractive percentage	. 49
SECOND EXPERIMENT	50
I- Vegetative Growth Characters	50
1- Plant height	50
2- Stem diameter at and 10 cm above soil surface	51

3- Fresh and dry weights of stem	53
4- Leaf area	54
5- Fresh and dry weights of leaves	55
6- Root length	56
7- Fresh and dry weights of roots	58
II- Chemical Constituents	60
1- Leaves contents of chlorophyll a and b and carotenoids	60
2- Leaves contents of reducing and total sugars	61
3- Leaves percentage of Nitrogen, Phosphorus and Potassium	62
4- Leaves uptake of Nitrogen, Phosphorus and Potassium	63
III- Wood Properties	65
1- Fiber length	65
2- Specific gravity	65
3- Moisture percentage	. 66
4- Leaves and wood extractive percentages	67
SUMMARY AND CONCLUSION	74
REFERENCES	81
ARABIC SUMMARY	

INTRODUCTION

One of the most formidable problematic of the agricultural production in Egypt is the restricted cultivable area in proportion to the vast increasing immense population. This necessitated keen and eager search for new land which could be productive after being reclaimed at reasonable cost. At the last five decades all attentions were paid for Northern parts of the country, while considerable attention is recently paid to the Southern parts, which look like sub-tropical arid climate. In such area it might be wise to use the natural resources especially water and land for maximizing agricultural production from the unit area.

The major project in this area is Toshka which goals to plant huge amounts of land till the year of 2017. According to soil classification 50. % of this area is above the 4 th grade, and according to meteorological data this area has 40-50°C in summer and 20-30°C in winter, humidity is 12-23 % around the year and windy.

Establishing new communities in such area needs to change the microclimate, establishing windbreaks and shelterbelts to protect all activities (human, agriculture, industrial), and most important, green cover and water surface. Chosen trees for conducting such protection must be adaptable to these conditions.

One of the most important woody trees adapted to the forementioned severe soil and climatic conditions is *Khaya senegalensis*, A. Juss. (Fam. Meliaceae). The tree is semi-evergreen and native to tropical West Africa, Sudan and Uganda. It was introduced into Upper Egypt as it grows well in this part of the country as shade and avenue tree. The timber yields good

African mahogany wood. It is hard, heavy and durable, (El-Hadidi and Boulos, 1979). It's timber is reddish-brown, solid and well built that doesn't allow attrition, easily manufactured, varnished and glued. It is used in manufacturing of furnitures, musical instruments, lumber works, carts, ships, boats, boxes, play wood and veneers, (Badran, et al., 1978). Also the tree considered as a multipurpose tree as the seeds contain 25 % fixed oil, (Abd El-Dayem, 1982), which used as an insecticide, (El-Fozairy, et al., 1994). In addition, Khaya senegalemsis may be planted successfully in Toshka as windbreak and as a main tree in shelterbelts to protect all activities in such area.

So, this work aimed to determine the optimum agricultural treatments, particularly, water requirements, fertilization (NPK and micronutrients) rates and gibberellic acid concentrations which induce best growth of the tree in order to produce healthy tree capable of growing and protecting various activities. In addition, to afforestation the soil above grade four as a reclaimed method capable of changing the microclimate.