

بسم الله الرحمن الرحيم

-C-02-50-2-

شبكة المعلومات الجامعية التوثيق الالكتروني والميكرونيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

BIOLOGICAL STUDIES ON PROBIOTIC BACTERIA IN SOYMILK

By

ABDALLAH IBRAHIM GAD MOHAMMED

B.Sc. Agric. Sci. (General agricultural production), South Valley University, (2015)

A Thesis Submitted in Partial Fulfillment Of The Requirement for the Degree of

in
Agricultural Science
(Microbiology)

Department of Microbiology Faculty of Agriculture Ain Shams University

Approval sheet

BIOLOGICAL STUDIES ON PROBIOTIC BACTERIA IN SOYMILK

By

ABDALLAH IBRAHIM GAD MOHAMMED

B.Sc. Agric. Sci. (General agricultural production), South Valley University, (2015)

This thesis for M. Sc degree has been approved by:

Dr. Olfat Sayed Mahmoud Mohammed

Prof. of Fermentation and food Microbiology, Fac. of Agric. Cairo Univ.

Dr. Fatma Refat Abdel-Rahman Nasar

Prof. Emeritus of Agric. Microbiology, Fac. of Agric. Ain shams Univ.

Dr. Khadiga Ahmed Ahmed Abou-Taleb

Prof. of Agric. Microbiology, Fac. of Agric. Ain shams Univ.

Dr. Mona Mansour Oraby

Prof. Emeritus of Agric. Microbiology, Fac. of Agric. Ain shams Univ.

Date of Examination: 4 / 10 /2021

BIOLOGICAL STUDIES ON PROBIOTIC BACTERIA IN SOYMILK

By

ABDALLAH IBRAHIM GAD MOHAMMED

B.Sc. Agric. Sci. (General agricultural production), South Valley University, (2015)

Under the supervision of:

Dr. Mona Mansour Oraby

Prof. Emeritus of Agric. Microbiology, Dept. of Agric. Microbiology, Fac. of Agric., Ain shams Univ.

Dr. Khadiga Ahmed Ahmed Abou-Taleb

Prof. of Agric. Microbiology, Dept. of Agric. Microbiology, Fac. of Agric., Ain shams Univ.

Dr. Shimaa Abd el Raouf Amin

Prof. Assoc of Agric. Microbiology, Dept. of Agric. Microbiology, Fac. of Agric., Ain shams Univ.

ABSTRACT

Abdallah Ibrahim Gad Mohammed: Biological Studies on Probiotic Bacteria in Soymilk, Unpublished M.Sc. Thesis, Department of Microbiology, Faculty of Agriculture Ain Shams University, 2021.

Five probiotic bacterial strains (*Lactobacillus plantarum* ATCC 14917, *Lactobacillus casei* DSM 20011, *Lactobacillus acidophilus* ATCC 20552, *Lactococcus thermophilus* DSM 20259, and *Bifidobacterium longum* B41409) were used as monoculture, and combined with them as consortia cultures for the fermentation of soymilk. The total number is 20 co-cultures, separated similarly into two parts, the first half of each co-culture consisted of two strains, and the second half of each co-culture consists of three strains. The findings revealed that these mono cultures were capable of fermenting soymilk during 8 h of fermentation time. The viability increased from 8.11 CFU/mL to 9.47 CFU/mL, pH was dropped of between 4.54 to 4.89, and total acidity increased from 0.030 to 3.17%, while the co-cultures were used as two cultures the results recorded viability from 8.21 to 9.88 CFU/mL, pH from 4.87 to 4.51.

The chemical composition of soymilk consisted of protein (2.10 %), carbohydrate (2.43 %), fat (2.13), ash (0.18), and total solids (6.84) while fermented one consisted of protein ranged from 3.12 to 3.95 %, carbohydrate from 1.51 to 2.24 %, fat from 1.40 to 1.92 %, ash 0.31 to 0.52 %, and total solids 7.48 to 8.57%. The antioxidant properties of fermented soymilk was determined and compared with non fermented one, the results shown an increase in DPPH scaving activity after soymilk fermentation.

Seven pathogenic strains *E.coli* o157H7, *S. aureus* As4, *S. typhimurium* As3, *S. shigae* As2, *L. monocytogenes* As1, *P. aeruginosa* Atcc27853 and *B. cereus* Dsmz 345.were used to study antibacterial activity of fermented soymilk. Results indicated that Gram-negative pathogenesis was more significantly sensitive to probiotic cultures than

gram-positive pathogenesis *E. coli* O15H7, *S. typhimirium* As3, and *Shigella shigae* As2 were more significantly sensitive to probiotic cultures which gave inhibition zone diameter (IZA) ranged from 10 to 20 mm, 12 to 16 mm, and 10 to 16 mm, respectively while *P. aeruginosa Atcc* 27853 shown the lowest (IZA) ranged from 3 mm to 8 mm.

The toxocity of fermented soymilk were tried on rats, and compared fermented soymilk (FSM) with (CY) were tried on rats for biological studies, and compare FSM with CY, results shown that no significant changes in body weight, organs weight, liver function, kidney function, lipid profile, and histopathological analysis, when compared its with control group, the antidiabetic properties were mesured, the rats were inducted with alloxan (120mg/kg), and treated with FSM, and CY, the also results shown an decrease in gloucose level, from 210 mg/dL and 207 mg/dL to 109 mg/dL and 115 mg/dL respectively, the body weight were increase in treated groups, and decrease in non treated group, Caco 2 and HT29 cancer cells were used to study the anticancer properties of FSM.

Sensory properties of FSM was determined, an improvement was shown in sensory analysis after soymilk fermentation. The affect of shelf-life (storage period) on FSM quality and properties were evoluted, during shelf-life (storage period), FSM saved its properties and qulity after 28 days of cold storage.

Finally, it could be stated that the soymilk fermented by probiotic bacterial strains had a high nutriational, health, and economic value.

Keywords: Probiotic bacteria, Fermented soymilk, Chemical composition, Antioxidant, Antibacterial, Antidiabetic, Anticancer, Shelf-life.

CONTENTS

	Page
LIST OF TABLES	I
LIST OF FIGURES	II
LIST OF ABBREVIATIONS	III
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	4
2.1. Probiotics	4
2.2. Probiotic bacterial starter cultures	4
2.2.1. Lactobacillus plantarum	4
2.2.2. Lactobacillus casei	7
2.2.3. Lactobacillus acidophilus	7
2.2.4. Lactococcus thermophilus (Streptococcus thermophilus)	8
2.2.5. Bifidobacterium longum	8
2.3. Probiotics and human health	9
2.4. Prebiotics	12
2.5. Health benefits of prebiotics	14
2.6. Synbiotics	17
2.7. Probiotics and functional foods	19
2.8. Probiotic foods	21
2.9. Probiotic and fermented foods	22
2.10. Soy based food	24
2.11. Soymilk Fermentation	26
2.12. Health benefits of Soymilk fermented by probiotic	
bacteria	28
2.12.1. Antihypertensive	28
2.12.2. Hypocholesterolemia	30
2.12.3. Antioxidative	31
2.12.4. Anticancer	32
2.12.5. Immunomodulatory	33
2.12.6. Antidiabetic	34

2.12.7. Bone Health	35
2.12.8. Antiobesity	36
3. MATERIALS AND METHODS	37
3.1- Sample's collection	37
3.2- Bacterial strains used	37
3.2.1- Probiotic bacterial strains	37
3.2.2- Pathogenic bacterial strains	37
3.3. Media used	38
3.4. Soymilk preparation	39
3.5. Maintenance of cultures	40
3.6. Inoculum preparation	40
3.6.1. Preparation of standard fermented bacterial inoculum	40
3.6.2. Preparation of standard pathogenic bacterial inoculum	40
3.7. Soymilk fermentation process	41
3.8. Effect of single and consortia probiotic cultures on soymilk	
fermentation	41
3.9. Statistical designs for optimization of soymilk fermented by	
consortia probiotic cultures	42
3.9.1. Screening the most effecting variables using minimum	
run resolution- IV (Min Run Res IV) design	42
.9.2. Maximization of the fermentation conditions for soymilk	
fermentation using response surface methodology	
(RSM)	43
3.10. Biological (In vivo) studies (experiments)	45
3.10.1. Toxicity experiment	45
3.10.2. Antidiabetic experiment	46
3.10.3. Histopathological examination	46
3.11 Some applications of fermented soymilk	47
3.11.1. as antibacterial activity	47
3.11.1.1. Determination of minimum inhibitory concentration	
(MIC)	47

3.11.1.2. Determination of minimum bactericidal concentration	
(MBC)	47
3.11.1.3. Evaluation of bacteriostatic and bactericidal effect	48
3.11.2. As antitumor using cell line	48
3.11.2.1. Cell line Propagation:	48
3.11.2.2. Cytotoxicity evaluation using viability assay:	48
3.12. Sensory properties evaluation of fermented soymilk	49
3.13. Shelf-life of fermented soymilk	49
3.14. Analytical methods	50
3.14.1. pH value	50
3.14.2. Determination of total acidity	50
3.14.3. Cell viable count (viability)	50
3.14.4. Coagulation time	50
3.14.5. Antioxidant determination	51
3.14.5.1. Extraction of antioxidant	51
3.14.5.2. Quantitative analysis of antioxidant by measuring of a	
di phenyl picrylhydrazyl (DPPH) free	51
3.14.6. Chemical analysis of fermented Soymilk	52
3.14.6.1. protein	52
3.14.6.2. Fat	53
3.14.6.3. Ash	54
3.14.6.4. Moisture	54
3.14.6.5. Total solid	54
3.14.6.6. Carbohydrates	54
3.14.6.7. Determination of Total Phenolic content, free amino	
acids, Saponin, and isoflavone.	55
3.14.6.7.1. Preparation of solvent extracts	55
3.14.6.7.2. Determination of total phenolic content	55
3.14.6.7.3. The free amino acid content measurement	55
3.14.6.7.4. Quantification of total saponin	56
3.14.6.7.5. HPLC analysis of the soy isoflavone	56
3.14.7. Determination of biochemical parameters	57

3.14.7.1. Liver furcation and kidney function	57
3.14.7.2. Lipid profile	57
3.15. Statistical analysis	58
4. RESULTS AND DISCUSSION	59
4.1. Soymilk fermentation with probiotic bacterial cultures as	
monoculture	59
4.1.1. Growth of probiotic bacterial strains in soymilk	59
4.1.2. Change on pH, total acidity (TA) and organic acids	
content during soymilk fermentation by single strains	62
4.2. Soymilk fermentation with consortia probiotic bacterial	
cultures	67
4.2.1. Growth of consortia probiotic bacterial strains in soymilk	67
4.2.2 Change on pH, TA and organic acids content during	
soymilk fermentation by consortia strains	75
4.3. Nutritional values of fermented products by probiotics	
strains	86
4.4. Antioxidant properties of fermented soymilk products	90
4.5. Antimicrobial effect of fermented soymilk products against	
pathogenic bacterial strains	92
4.5.1. Minimum inhibitory concentration (MIC) of fermented	
soymilk products	98
4.5.2. Minimum bactericidal concentration (MBC) of fermented	
soymilk	101
4.5.3. Antibacterial mode of action	104
4.6. Statically optimization of soymilk fermented by consortia	
probiotic strains.	106
4.6.1. Screening of most significant fermentation parameters	
using Minimum Run Resolution design	106
4.6.2. Central Composite design for optimization of three	
independent variables affected by probiotic bacteria	
soymilk fermentation	111