

بسم الله الرحمن الرحيم

-C-02-50-2-

شبكة المعلومات الجامعية التوثيق الالكتروني والميكرونيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

Neutrophil to lymphocyte ratio and platelet to lymphocyte ratio in evaluation of inflammation and nutritional Status in pre dialysis chronic kidney disease patients

Thesis

Submitted for partial fulfillment of Master Degree in Internal Medicine

By
Ghada Abd El Hahmed El Kezza
M.B.BCH, Diploma in internal medicine

Supervised by

Prof. Sahar Mahmoud Shawky

Professor of Internal Medicine and Nephrology Faculty of Medicine - Ain Shams University

ASST. Prof. Maha Abd El Moneim Behairy

Assistant Professor of Internal Medicine and Nephrology Faculty of Medicine - Ain Shams University

ASST. Prof. Somia Abd El hamid Bawady

Assistant Professor of Clinical Pathology Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2021

First of all, all gratitude is due to Allah almighty for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.

Prof. Sahar Mahmoud Shawky Professor of Internal Medicine and Nephrology Faculty of Medicine - Ain Shams University, I would like to gratefully acknowledge the support, supervision and kindness of Asst. Prof. Maha Abd El Moneim Behairy, Assistant Prof of Internal Medicine and Nephrology, Faculty of Medicine - Ain Shams University for her moral support and continuous guidance had given me great help throughout my study. My sincere thanks to Asst. Prof. Somia Abd El hamid Bawady, Assistant Prof of Clinical Pathology, Faculty of Medicine in Ain Shams University for her valuable supervision, support and continuous help.

I would like also to thank all participants in this study who gave their time and cooperation during data collection.

Ghada Abd El Hahmed El Kezza

List of Contents

List of Abbreviations	i
List of Tables	V
List of Figures	vi
Introduction	1
Aim of the Work	5
Review of literature	
Malnutrition and CKD	6
Assessment of Nutritional status in CKD pa	itients 30
Inflammation and CKD	77
Interventions for inflammation in CKD	106
Patients and methods	112
Results	126
Discussion	142
Summary and conclusion	156
Reference	160
Arabic summary	

CKD Chronic kidney disease
ESRD End stage renal disease
GFR Glomerular filtration rate
GIT Gastrointestinal tract

CVD Cardiovascular disease

GERD Gastroesophageal reflux disease

DM Diabetes mellitus

ESAs Erythropoiesis- stimulating agents

HTN Hypertension NK Natural killer

MIA Syndrome malnutrition – inflammation -

atherosclerosis

CRP C-reactive protein
IL1β Iterleukin-1 beta
IL-6 Interleukin-6
IL-1 Interlukin-1

hs-CRP High-sensitivity C-reactive protein

PTX3 Pentraxin

ROS Reactive oxygen species
PMN Polymorph nuclear cells
TLR-4 Toll-like receptors 4
TLR-2 Toll-like receptors-2

CLRs C-type lectin receptorsTNF-α Tumor necrosis alpha

G-CSF Growing factor

DAMPs Damage-associated molecular patterns

PRRs Pattern recognizing receptors

RIGs Retinoic acid-inducible gene

NF-kB Nuclear factor-kappa B

NLRs Intracellular Node-like receptors HIN-200 Hematopoietic interferon - 200

AP-1 Activator protein-1

RCC Renal cell carcinoma

MPs Membrane microparticles
TLC Total leukocyte count

DLC Differential leukocyte count

PAMPs Pathogen-associated molecular patterns

NLR Neutrophil – lymphocyte ratio
PLR Platelet – lymphocyte ratio

HD HemodialysisMHD Maintenance HD

PEW Protein energy wasting

ISRNM International society of renal nutrition and

metabolism

RRT Renal replacement therapy

RAAS Renin angiotensin aldosterone system

IGF-1 Insulin -like growth factor- 1

IGF-1BP Insulin -like growth factor binding proteins

BMI Body mass index

IHME Institute for health metrics and evaluation

ORG Obesity-related glomerulopathy

%UBW %usual body weightTSF Triceps- skin fold

FFM Fat free mass

FM Fat Mass

MAC Mid arm circumference

MAMC Arm muscle circumference

ECW Extracellular water BCM Body cell mass

ECM Extra-cellular mass

APPR Acute phase protein response

Hcy Homocysteine

PD Peritoneal dialysis
TBN Total body nitrogen
TBK Total body potassium

DXA Dual x-ray absorptiometry
BIA Bio-impedance analysis

SGA Subjective global assessment

m-SGA Modified subjective global assessment

DMS Dialysis Malnutrition Score

MIS Malnutrition Inflammation Score

CAPD Continuous ambulatory peritoneal dialysis

PG-SGA Patient-Generate Subjective Global

Assessment

PhilSPEN Philippine Society of Parenteral and Enteral

Nutrition

RDN Registered dietitian nutritionist
 nPCR Normalized protein catabolic rate
 PNA Protein equivalent of total nitrogen

appearance

QOL Quality of life

MNT Medical Nutrition Therapy

NEAP Net Acid production

LC n-3 PUFA Long Chain Omega-3 Polyunsaturated Fatty

Acids

IDPN Total and Intradialytic Parenteral NutritionDASH Dietary approaches to stop hypertension

DGA Dietary guidelines for American

HDF HemodiafiltrationHDx Expanded HD

HRO High retention onset

MCO Medium cut-off

MDRD Modification of Diet in Renal Disease

ACR Albumin: creatinine ratio

HGS Hand grip strength

WHO World health organization

List of Tables

Table (1): (ISRNM) PEW syndrome criteria and categories: 16
Table (2): Nutritional requirements in CKD 69
Table (3): Nutritional requirements in diabetic nephropathy. 71
Table (4): Partial list of platelet-derived inflammatory mediators and immune modulators
Table (5): Clinical studies of NLR/PLR as predictors of death in patients with chronic kidney disease.
Table (6): Modified SGA and RISK level determination 120
Table (7): Comparison between the two studied groups according to demographic data: 128
Table (8): Distribution of the studied cases according to causes of CKD , comorbidities and medications in cases group
Table (9): Distribution of patient group according to CKD stages 130
Table (10): Comparison between the two studied groups according to TSF, MAC & MAMC 131
Table (11): Comparison between two groups according to laboratory data.132
Table (12): Comparison between the two studied groups according to PLR, NLR & hs-CRP: 133
Table (13): Correlation of PLR with demographic data , anthropometric measurements and laboratory data in patients group
Table (14): Correlation of NLR with demographic data, anthropometric measurements and laboratory data in patients group
Table (15): Correlation between m-SGA and different parameter137
Table (16): Comparison between the different classes of BMI in patients group regarding their correlation with hs-CRP, PLR, NLR and m-SGA

List of Figures

Figure (1): Mechanism of development of uremic malnutrition in CKD15
Figure (2): Mechanism of CKD in obese individuals
Figure (3): Supporting evidence for composite nutritional assessment tools.49
Figure (4): Pathogenesis of CVD in CKD. Note. CKD:
Figure (5): Inflammation-Related Mechanisms in Chronic Kidney Disease Prediction, Progression, and Outcome
Figure (6): Available therapeutic strategies for persistent inflammation in CKD. ACE, angiotensin-converting enzyme;111
Figure (7): Classification of CKD using GFR and ACR categories123
Figure (8): Significant correlation between PLR and hs-CRP among CKD patients
Figure (9): Significant Correlation between NLR & BMI among CKD patients
Figure (10): Significant Correlation between NLR and hs-CRP among CKD patients
Figure (11): Significant correlation between NLR and MAMC among CKD patients
Figure (12): Significant correlation between m-SGA and HB
Figure (13): Significant Correlation between SGA and ACR (mg/g) in CKD patients
Figure (14): Significant Correlation between SGA and S.CR (mg/dl) among CKD patients
Figure (15): Significant Correlation between SGA and BUN (mg/dl) among CKD patients

Introduction

Chronic kidney disease (CKD) is defined as decline in glomerular filtration rate (GFR) to less than 60 ml/min/1.73 m² with or without structural kidney damage for more than 3 months (*Levey et al.,2011*), it considered as a significant emerging worldwide health problem (*Levey et al., 2007*) that leading to an economic burden on health care system (*Freeman et al., 2018*), yet over the past 27 years CKD burden has not decline as a burden of other important noncommunicable diseases, in 2017 there is 1.2 million deaths as a result of CKD, by 2040 the number has been projected to rise to 2.2 million in a best-case scenario and up to 4 million in a worst-case scenario (*Cockwell & Fisher, 2020*).

In CKD patients the mortality mainly been attributed to cardiovascular disease (CVD) for many years, the evidence of non-cardiovascular mortality in CKD patient also increased during last years like a mortality from infection or malignancies, the relation between some traditional risk factors for CVD and non-cardiovascular mortality in uremic environment also described (*De jager et al.,2014*).

Inflammation and malnutrition considered as a components of CKD that can leading to poor outcome

(Maraj et al., 2018), Sustained low grade inflammatory status in CKD have been proved in many studies (Kutsal et al., 2016), (Ahbap et al, 2016), (Abd ElHafeez et al., 2018) and considered as an essential part of CKD since 1990 (Akchurin & Kaskel ,2015), with prevalence of 30%-60% for inflammation and 40% for malnutrition in uremic patients which described as independent risk factors for mortality in CKD (Kutsal et al., 2016).

Inflammation is considered as important link between increased risk of both cardiovascular and non-cardiovascular mortality in CKD patients (*De jager et al.,2014*), and the role of inflammatory mediators is proven in many studies after detection of high levels of these mediators in patients with CKD (*Maraj et al., 2018*), (*Pecoits- Filho et al., 2002*).

The relation of inflammation and malnutrition to CVD is mentioned in previous studies known as malnutrition, inflammation, and atherosclerosis referred as MIA syndrome, considered as a silent factor for increased cardiovascular mortality rates in CKD patients, this increasing in cardiovascular mortality is not enough to be explained by the effect of traditional risk factors like diabetes mellitus (DM), hypertension (HTN), hyperlipidemia (*Turkmen et al., 2012*).

mediators play important Inflammatory an development of atherosclerotic heart disease and considered as a strong indicator for its progression, acute phase reactant like c-reactive protein (CRP) and proinflammatory cytokines like interleukin-6 (IL-6) & tumor necrosis factor alpha (TNFα) are will known conventional inflammatory mediator as will as a total leukocyte count (TLC) the classical inflammatory markers in many cardiovascular studies, the differential leukocyte count (DLC) is introduced in evaluation of inflammatory response that related to CVD, neutrophilia and relative lymphocytopenia are founded to be independent predictor of mortality in patient with heart failure (Okyay et al., 2013).

Neutrophil to lymphocyte ratio (NLR) introduced as inflammatory marker in many cardiac and non-cardiac diseases (*Sibarani et al.*, 2018), it is easily determined and cost effective predictor of mortality in patient with heart failure and myocardial infarction (*Okyay et al.*, 2013)

In some researches NLR is found to be associated with CKD and its progression *(Sibarani et al., 2018)* and reported to be closely related to inflammation in both hemodialysis (HD) and peritoneal dialysis (PD) with limited data regarding this association in pre-dialysis CKD patients.